Vol. 40, No. 3

Pharmacological Reviews

Copyright © 1988 by The American Society for Pharmacology and Experimental Therapeutics
 Calcium Mobilization and Cardiac Inotropic Mechanisms

MELCHIOR REITER

MELCHIOR REITER **ICIUM MObilization and Cardiac Inotropic Mechanism**
MELCHIOR REITER
Institut für Pharmakologie und Toxikologie der Technischen Universität München, 8000 München 40, Federal Republic of Germany

MELCHIOR REITER

I. Introduction

I. Introduction
THIS REVIEW is based on a contribution to a sympon-
non the role of calcium in cardiac function* whi I. Introduction has a real of calcium in cardiac function* which
sium on the role of calcium in cardiac function* which
was held in honor of Otto Krayer, Pharmacologist at **I.** Introduction
THIS REVIEW is based on a contribution to a symposium on the role of calcium in cardiac function* which
was held in honor of Otto Krayer, Pharmacologist at
Harvard from 1939 to 1966 (144). Krayer had dev 1. Introduction
THIS REVIEW is based on a contribution to a sympo-
sium on the role of calcium in cardiac function* which
was held in honor of Otto Krayer, Pharmacologist at
Harvard from 1939 to 1966 (144). Krayer had deve THIS REVIEW is based on a contribution to a sym
sium on the role of calcium in cardiac function* wh
was held in honor of Otto Krayer, Pharmacologist
Harvard from 1939 to 1966 (144). Krayer had develop
in 1931, a method whi

nation, in the heart-lung preparation, of the ability of
the heart to function as a pump (224). He thereby pronation, in the heart-lung preparation, of the ability of
the heart to function as a pump (224). He thereby pro-
vided a new and greatly improved means for the experi-
mental evaluation of inotropic drugs which he used most e heart to function as a pump (224). He thereby pro-
ded a new and greatly improved means for the experi-
ental evaluation of inotropic drugs which he used most
fectively for most of the rest of a distinguished career.
The vided a new and greatly improved means for the experimental evaluation of inotropic drugs which he used most effectively for most of the rest of a distinguished career.

was held in honor of Otto Krayer, Pharmacologist at Harvard from 1939 to 1966 (144). Krayer had developed,

in 1931, a method which allowed quantitative determi-

^{the} elucidation of the cellular mode of action of ino-

 effectively for most of the rest of a distinguished career.
The elucidation of the cellular mode of action of ino-
tropic drugs became possible only after the intracellular
messenger function of calcium in muscle became re The elucidation of the cellular mode of action of ino-
tropic drugs became possible only after the intracellular
messenger function of calcium in muscle became recog-
nized in the late forties and fifties (for reviews, see tropic drugs became possible only after the intracellular messenger function of calcium in muscle became recognized in the late forties and fifties (for reviews, see refs. 337 and 405). The first evidence that calcium migh messenger function of calcium in muscle became recognized in the late forties and fifties (for reviews, see refs.
337 and 405). The first evidence that calcium might
transmit the signal given by the action potential on the nized in the late forties and fifties (for reviews, see refs.
337 and 405). The first evidence that calcium might
transmit the signal given by the action potential on the
membrane surface to the contractile material in the 337 and 405). The first evidence that calcium might transmit the signal given by the action potential on the membrane surface to the contractile material in the center of the fiber came from the injection of calcium into l transmit the signal given by the action potential on the membrane surface to the contractile material in the center of the fiber came from the injection of calcium into living muscle by Heilbrunn and Wiercinski (156). They

HARMACOLOGICAL REVIEW

in 1931, a method which allowed quantitative determi-
* This article is the first of a series of articles arising from a program
on Vistas in Pharmacology presented at a joint meeting of the American
Society for Pharmacolo Society for Pharmacology presented at a joint meeting of the American

Society for Pharmacology presented at a joint meeting of the American

Society for Pharmacology and Experimental Therapeutics and the

American Chemica on Vistas in Pharmacology presented at a joint meeting of the American
Society for Pharmacology and Experimental Therapeutics and the
3. American Chemical Society Division of Medicinal Chemistry, August
18-22, 1985, in Bos assex. The program entitled "The Role of Calcium
Cardiac Function" was dedicated to Otto Krayer. The material
been updated by the authors and prepared for publication with
assistance of John R. Blinks whose participation i edged.

RETT
cause an immediate and pronounced shortening, an effect
which is not shared by any other cation in a concentra-190
cause an immediate and pronounced shortening, an et
which is not shared by any other cation in a concention normally present in muscle. Later, a relaxing fa REIT
cause an immediate and pronounced shortening, an effect
which is not shared by any other cation in a concentra-
tion normally present in muscle. Later, a relaxing factor
was identified and found to consist of calciumcause an immediate and pronounced shortening, an which is not shared by any other cation in a conction normally present in muscle. Later, a relaxing was identified and found to consist of calcium-aclating vesicles formed f cause an immediate and pronounced shortening, an effect The if which is not shared by any other cation in a concentra-
tion normally present in muscle. Later, a relaxing factor of the was identified and found to consist of which is not shared by any other cation in a concentration normally present in muscle. Later, a relaxing factor was identified and found to consist of calcium-accumulating vesicles formed from the sarcoplasmic reticulum wh tion normally present in muscle. Later, a relaxing factor
was identified and found to consist of calcium-accumu-
lating vesicles formed from the sarcoplasmic reticulum
which contains much of the cellular calcium content
du In a identified and found to consist of calcium-accumu-

ing vesicles formed from the sarcoplasmic reticulum

inich contains much of the cellular calcium content

other

ing rest (154, 95).

In asking why cardiac muscle is

lating vesicles formed from the sarcoplasmic reticulum
which contains much of the cellular calcium content
during rest (154, 95).
In asking why cardiac muscle is more susceptible to
inotropic interventions than skeletal mu which contains much of the cellular calcium content of
during rest (154, 95).
In asking why cardiac muscle is more susceptible to
cinotropic interventions than skeletal muscle, it was rea-
sonable to look for differences i during rest (154, 95).
In asking why cardiac muscle is more susceptible to
inotropic interventions than skeletal muscle, it was rea-
sonable to look for differences in the ultrastructure of
the two types of striated muscle In asking why cardiac muscle is more susceptible to
inotropic interventions than skeletal muscle, it was rea-
sonable to look for differences in the ultrastructure of
the two types of striated muscle (123). In cardiac musc inotropic interventions than skeletal muscle, it was reasonable to look for differences in the ultrastructure of the two types of striated muscle (123). In cardiac muscle, likely which is much more dependent on extracellul sonable to look for differences in the ultrastructure of calculate that of striated muscle (123). In cardiac muscle, by which is much more dependent on extracellular calcium, lose than that of skeletal muscle. The differe the two types of striated muscle (123) . In cardiac muscle, by the which is much more dependent on extracellular calcium, loads the sarcoplasmic reticulum was found to be less extensive later than that of skeletal muscle which is much more dependent on extracellular calcium,
the sarcoplasmic reticulum was found to be less extensive
than that of skeletal muscle. The difference between the
two kinds of muscle with respect to calcium metaboli the sarcoplasmic reticulum was found
than that of skeletal muscle. The diff
two kinds of muscle with respect to α
was therefore assumed to reside prin
ence in their sarcoplasmic reticulum.
The lower capacity of cardiac an that of skeletal muscle. The difference between the o kinds of muscle with respect to calcium metabolism
as therefore assumed to reside primarily in the differ-
ce in their sarcoplasmic reticulum.
The lower capacity of

two kinds of muscle with respect to calcium metabolis was therefore assumed to reside primarily in the difference in their sarcoplasmic reticulum.
The lower capacity of cardiac muscle for calcium stage may be indirectly co was therefore assumed to reside primarily in the difference in their sarcoplasmic reticulum. The lower capacity of cardiac muscle for calcium stor-
age may be indirectly connected with a special electro-
physiological feat ence in their sarcoplasmic reticulum. The lower capacity of cardiac muscle for calcium stor-
age may be indirectly connected with a special electro-
physiological feature of the cardiac cell: the long duration
of its actio The lower capacity of cardiac muscle for calcium stor-
age may be indirectly connected with a special electro-
physiological feature of the cardiac cell: the long duration
of its action potential (408). Its long-lasting pl age may be indirectly connected with a special electro-
physiological feature of the cardiac cell: the long duration
of its action potential (408). Its long-lasting plateau
allows voltage-dependent passive movements of ion physiological feature of the cardiac cell: the long duration
of its action potential (408). Its long-lasting plateau the
allows voltage-dependent passive movements of ions to
altake place which might be relevant for contra of its action potential (408). Its long-lasting plateau than
allows voltage-dependent passive movements of ions to appe
take place which might be relevant for contraction. In-
fluences on passive or active transport of ion allows voltage-dependent passive movements of id
take place which might be relevant for contraction
fluences on passive or active transport of ions the
the sarcolemma may affect cellular calcium metab
and thereby the inotr

and thereby the inotropic state of cardiac muscle.
 II. Control Sites of Contraction-related Cal

in the Cardiac Ventricular Cell
 A. Calcium Influx **II. Control Sites of Contraction-related Calcium**

I. Control Sites of Contraction-related Calcium ne
in the Cardiac Ventricular Cell and
minute cytoplasmic concentration of Ca ions is
when the cytoplasmic concentration of Ca ions is
ised above a threshold concentration of in the Cardiac Ventricular Cell a remember and the cytoplasmic concentration of Ca ions is of C
When the cytoplasmic concentration of Ca ions is Traised above a threshold concentration of about 200 regard nmol/liter, the c A. Calcium Influx

When the cytoplasmic concentration of Ca ions is

raised above a threshold concentration of about 200

nmol/liter, the contraction of cardiac muscle is activated (361). In order to relax, the muscle has (361). In order to relax, the muscle has to relax, the muscle is activated concentration of about 200 reduce its muscle is activated (361). In order to relax, the muscle has to reduce its to sarcoplasmic Ca concentration a When the cytoplasmic concentration of Ca ions is
raised above a threshold concentration of about 200 reg
nmol/liter, the contraction of cardiac muscle is activated Ca
(361). In order to relax, the muscle has to reduce its raised above a threshold concentration of about 2
nmol/liter, the contraction of cardiac muscle is activat
(361). In order to relax, the muscle has to reduce
sarcoplasmic Ca concentration again to values below t
threshold nmol/liter, the contraction of cardiac muscle is activated (361). In order to relax, the muscle has to reduce its sarcoplasmic Ca concentration again to values below the threshold concentration which is four orders of magn (361). In order to relax, the muscle has to reduce its to sarcoplasmic Ca concentration again to values below the my threshold concentration which is four orders of magnitude lower than the Ca concentration of the extrace sarcoplasmic Ca concentration again to values below th
threshold concentration which is four orders of magnitude
lower than the Ca concentration of the extracellula
fluid. The contraction, therefore, is governed by rapic
c threshold concentration which is four orders of magni-
tude lower than the Ca concentration of the extracellular vol
fluid. The contraction, therefore, is governed by rapid tin
changes in intracellular Ca concentration (ca tude lower than the Ca concentration of the extracellular
fluid. The contraction, therefore, is governed by rapid
changes in intracellular Ca concentration (calcium tran-
sients) as can be convincingly shown by means of th fluid. The contraction, therefore, is governed by rapid tinchanges in intracellular Ca concentration (calcium transients) as can be convincingly shown by means of the pocalcium-sensitive bioluminescent protein aequorin (39 sients) as can be convincingly shown by means of the calcium-sensitive bioluminescent protein aequorin (39, 41). In principle, there are two ways of modifying the strength of contraction: either by influencing the concentr sients) as can be convincingly shown by means of the position-sensitive bioluminescent protein aequorin (39, ti 41). In principle, there are two ways of modifying the strength of contraction: either by influencing the conc calcium-sensitive bioluminescent protein aequorin (39, tio.
41). In principle, there are two ways of modifying the sare
strength of contraction: either by influencing the concen-
tration (more precisely, the activity) of f 41). In principle, there are tv
strength of contraction: either
tration (more precisely, the
which is obtained after excitat
sensitivity of the myofilament
One way to increase the sarce rength of contraction: either by influencing the concention (more precisely, the activity) of free Ca ions hich is obtained after excitation, or by changing the Ca ositivity of the myofilaments.
One way to increase the sar tration (more precisely, the activity) of free Ca ions gravition is obtained after excitation, or by changing the Ca presentivity of the myofilaments. The sarcolemma during of the sarcolemma during SH the action potential,

which is obtained after excitation, or by changing the Ca
sensitivity of the myofilaments. of
One way to increase the sarcoplasmic Ca concentration
jured would be to open a channel in the sarcolemma during SR
the action p sensitivity of the myofilaments. The same of the way to increase the sarcoplasmic Ca concentration ium
would be to open a channel in the sarcolemma during SR
the action potential, thus allowing Ca ions to flow down (13
th One way to increase the sarcoplasmic Ca concentration
would be to open a channel in the sarcolemma during
the action potential, thus allowing Ca ions to flow down
their electrochemical gradient. This is probably the way
in would be to open a channel in the sarcolemma during SF
the action potential, thus allowing Ca ions to flow down (13)
their electrochemical gradient. This is probably the way
in which contraction is activated in the amphib the action potential, thus allowing Ca ions to flow down (1)
their electrochemical gradient. This is probably the way
in which contraction is activated in the amphibian heart
(407, 287, 204). However, in the mammalian hea their electrochemical gradient. This is probably the way
in which contraction is activated in the amphibian heart
(407, 287, 204). However, in the mammalian heart the
mechanism is more complicated. This can be deduced con in which contraction is activated in the amphibian heart $(407, 287, 204)$. However, in the mammalian heart the mechanism is more complicated. This can be deduced from experiments in which the influence on contraction of (407, 287, 204). However, in the mammalian heart the mechanism is more complicated. This can be deduced from experiments in which the influence on contraction of a prolongation of the action potential by current injection

ER
The frog's ventricle responded to each lengthening of the
action potential duration with an increase of the strength ER
The frog's ventricle responded to each lengthening of the
action potential duration with an increase of the strength
of the accompanying beat, whereas in the mammalian ER
The frog's ventricle responded to each lengthening of the
action potential duration with an increase of the strength
of the accompanying beat, whereas in the mammalian
ventricle the change was observed not in the accomp The frog's ventricle responded to each lengthening of action potential duration with an increase of the stren of the accompanying beat, whereas in the mammal ventricle the change was observed not in the accompaigned but in The frog's ventricle responded to each lengthening of the action potential duration with an increase of the strength
of the accompanying beat, whereas in the mammalian
ventricle the change was observed not in the accompa-
 action potential duration with an increase of the strength
of the accompanying beat, whereas in the mammalian
ventricle the change was observed not in the accompa-
nying beat but in the next following one. From these and
o of the accompanying beat, whereas in the mammalian
ventricle the change was observed not in the accompa-
nying beat but in the next following one. From these and
other comparable experiments (421) we must conclude
that, in ventricle the change was observed not in the accompa-
nying beat but in the next following one. From these and
other comparable experiments (421) we must conclude
that, in the mammalian heart cell, most of the activator
ca nying beat but in the next following one. From these and
other comparable experiments (421) we must conclude
that, in the mammalian heart cell, most of the activator
calcium does not come directly from the extracellular
sp other comparable experiments (421) we must conclude
that, in the mammalian heart cell, most of the activator
calcium does not come directly from the extracellular
space but from an intracellular compartment that stores
cal that, in the mammalian heart cell, most of the activator calcium does not come directly from the extracellular space but from an intracellular compartment that stores calcium in such a way that its release can be triggered calcium does not come directly from the extracellular space but from an intracellular compartment that stores calcium in such a way that its release can be triggered by the action potential. Simultaneously, calcium influx space but from
calcium in su
by the action
loads this container release.
B. Introcallul by the action potential. Simultaneously, calcium influx
loads this compartment from which it is available for
later release.
B. Intracellular Calcium Stores Noticellular compartment from which it is available for

inter release.

B. Intracellular Calcium Stores

Two intracellular compartments are known to accu-

mulate calcium, the mitochondria and the sarcoplasmic

take place which might be relevant for contraction. In-
fluences on passive or active transport of ions through
tochondria occurs only if the free Ca^{2+} concentration is
the sarcolemma may affect cellular calcium metabo later release.

B. Intracellular Calcium Stores

Two intracellular compartments are known to accu-

mulate calcium, the mitochondria and the sarcoplasmic

reticulum. In terms of total capacity the mitochondria B. Intracellular Calcium Stores
Two intracellular compartments are known to accu-
mulate calcium, the mitochondria and the sarcoplasmic
reticulum. In terms of total capacity the mitochondria
represent the largest calcium r B. Intracellular Calcium Stores
Two intracellular compartments are known to accumulate calcium, the mitochondria and the sarcoplasmi
reticulum. In terms of total capacity the mitochondri
represent the largest calcium reser Two intracellular compartments are known to accumulate calcium, the mitochondria and the sarcoplasmic reticulum. In terms of total capacity the mitochondria represent the largest calcium reservoir in the cell. However, the mulate calcium, the mitochondria and the sarcoplasmic
reticulum. In terms of total capacity the mitochondria
represent the largest calcium reservoir in the cell. How-
ever, their maximal velocity of Ca uptake is much less
 reticulum. In terms of total capacity the mitochond
represent the largest calcium reservoir in the cell. Ho
ever, their maximal velocity of Ca uptake is much le
than that of the sarcoplasmic reticulum (69), and th
appear n represent the largest calcium reservoir in the cell. However, their maximal velocity of Ca uptake is much less than that of the sarcoplasmic reticulum (69), and they appear not to accumulate much calcium under physiologic ever, their maximal velocity of Ca uptake is much less
than that of the sarcoplasmic reticulum (69), and they
appear not to accumulate much calcium under physio-
logical conditions (83). Considerable Ca uptake by mi-
toch than that of the sarcoplasmic reticulum (69), and they
appear not to accumulate much calcium under physio-
logical conditions (83). Considerable Ca uptake by mi-
tochondria occurs only if the free Ca²⁺ concentration is
 appear not to accumulate much calcium under physio-
logical conditions (83). Considerable Ca uptake by mi-
tochondria occurs only if the free Ca²⁺ concentration is
raised to levels that cause contractures (83). At 1 μ logical conditions (83). Considerable Ca uptake by mitochondria occurs only if the free Ca²⁺ concentration is raised to levels that cause contractures (83). At 1 μ M sarcoplasmic concentration, Ca uptake was calculate B. Intracellular Calcium Stores

Two intracellular compartments are known to accu-

mulate calcium, the mitochondria and the sarcoplasmic

reticulum. In terms of total capacity the mitochondria

represent the largest calc raised to levels that cause contractures (83). At 1 μ M
sarcoplasmic concentration, Ca uptake was calculated to
amount to only 6% of total uptake as compared with
nearly 90% by the sarcoplasmic reticulum (69). This and
 sarcoplasmic concentration, Ca uptake was calculated to amount to only 6% of total uptake as compared with nearly 90% by the sarcoplasmic reticulum (69). This and a relatively low rate of Na-induced Ca release make the mit amount to only
nearly 90% by the
a relatively low re
mitochondria not
of Ca movements
The sarcoplasn

of Ca movements.
The sarcoplasmic reticulum (SR) (see table 1) must be regarded as the chief regulator of the contraction-related Ca in the mammalian heart. The SR is suitably located relatively low rate of Na-induced Ca release make the mitochondria not adequate for the beat-to-beat control
of Ca movements.
The sarcoplasmic reticulum (SR) (see table 1) must be
regarded as the chief regulator of the con mitochondria not adequate for the beat-to-beat control
of Ca movements.
The sarcoplasmic reticulum (SR) (see table 1) must be
regarded as the chief regulator of the contraction-related
Ca in the mammalian heart. The SR is of Ca movements.
The sarcoplasmic reticulum (SR) (see table 1) must be
regarded as the chief regulator of the contraction-related
Ca in the mammalian heart. The SR is suitably located
to serve its purpose. Its dense networ I ne sarcopiasmic reticulum (SK) (see table 1) must be regarded as the chief regulator of the contraction-related Ca in the mammalian heart. The SR is suitably located to serve its purpose. Its dense network surrounds the Ca in the mammalian heart. The SR is suitably located
to serve its purpose. Its dense network surrounds the
myofibrils, and it is abundant in the space directly sub-
jacent to the sarcolemma (123, 365, 282, 364, 338). The to serve its purpose. Its dense network surrounds the
myofibrils, and it is abundant in the space directly sub-
jacent to the sarcolemma (123, 365, 282, 364, 338). The
volume of SR associated with each myofibril is up to 1 pacent to the sarcolemma (123, 363, 262, 364, 356). The
volume of SR associated with each myofibril is up to 15
times greater in the mammalian heart than in the frog
ventricle (300). The SR consists essentially of two comtimes greater in the mammalian heart than in the frog
ventricle (300). The SR consists essentially of two com-
ponents, the free SR (or longitudinal SR) and the junc-
tional SR, a synonym for the terminal cisterna or sub-
 ventricle (300). The SR consists essentially of two components, the free SR (or longitudinal SR) and the junctional SR, a synonym for the terminal cisterna or subsarcolemmal cisterna. In contrast to the tubules of the free ponents, the free SR (or longitudinal SR) and the junctional SR, a synonym for the terminal cisterna or subsarcolemmal cisterna. In contrast to the tubules of the free SR, the junctional SR contains an electron-dense granu tional SR, a synonym for the terminal cisterna or sub-
sarcolemmal cisterna. In contrast to the tubules of the
free SR, the junctional SR contains an electron-dense
granular material which consists of a calcium binding
pro sarcolemmal cisterna. In contrast to the tubules of the free SR, the junctional SR contains an electron-dense granular material which consists of a calcium binding protein referred to as calsequestrin (258). The structure free SR, the junctional SR contains an electron-dense
granular material which consists of a calcium binding
protein referred to as calsequestrin (258). The structure
of the junctional SR is characterized by the presence of granular material which consists of a calcium binding
protein referred to as calsequestrin (258). The structure
of the junctional SR is characterized by the presence of
junctional processes (feet) bridging the gap between protein referred to as calsequestrin (2
of the junctional SR is characterized l
junctional processes (feet) bridging th
SR membrane and the inner surface (
137, 261, 364, 131, 100, 336).
C. Excitation-Contraction Coupling *C. Excitation-Contraction-Contraction-Contraction-Contraction-Contraction-Coupling*
C. Excitation-Contraction Coupling
The regulation of intracellular Ca as represent R membrane and the inner surface of the sarcolemma
37, 261, 364, 131, 100, 336).
Excitation-Contraction Coupling
The regulation of intracellular Ca as related to cardiac
ntraction is connected with the excitation of the ce

(137, 261, 364, 131, 100, 336).

C. Excitation-Contraction Coupling

The regulation of intracellular Ca as related to cardiac

contraction is connected with the excitation of the cell

in a complex way (52). The depolariz C. Excitation-Contraction Coupling
The regulation of intracellular Ca as related to cardia
contraction is connected with the excitation of the ce
in a complex way (52). The depolarization of the mem-
brane triggers the rel C. *Excitation-Contraction Couping*
The regulation of intracellular Ca as related to card
contraction is connected with the excitation of the me
in a complex way (52). The depolarization of the me
brane triggers the relea lemmal cisternae of the sarcoplasmic reticulum (see sec-

aspet

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

T-system Transverse tubular system

UD-CG-115 Finobendane

tion III A), which leads to a rise of the sarcoplasmic C

concentration. The calcium release is apparently influ-

enced by muscle length (189, 84, 10). Increase i UD-CG-115 Pimobendane

tion III A), which leads to a rise of the sarcoplasmic Ca

concentration. The calcium release is apparently influ-

enced by muscle length (189, 84, 10). Increase in muscle

length causes an immedia length causes an immediate increase is apparently influ-
enced by muscle length (189, 84, 10). Increase in muscle
length causes an immediate increase in contractility and
a gradual subsequent rise. Whereas the former is mo tion III A), which leads to a rise of the sarcoplasmic Ca
concentration. The calcium release is apparently influ-
enced by muscle length (189, 84, 10). Increase in muscle
length causes an immediate increase in contractilit concentration. The calcium release is apparently influenced by muscle length (189, 84, 10). Increase in muscle
length causes an immediate increase in contractility and
a gradual subsequent rise. Whereas the former is most enced by muscle length (189, 84, 10). Increase in muscle
length causes an immediate increase in contractility and
a gradual subsequent rise. Whereas the former is most
likely the result of an increase in the affinity of t length causes an immediate increase in contractility and
a gradual subsequent rise. Whereas the former is most
likely the result of an increase in the affinity of troponin
C for calcium (159, 10), the slowly developing inc a gradual subsequent rise. Whereas the former is most

likely the result of an increase in the affinity of troponin

C for calcium (159, 10), the slowly developing increase

in during which the muscle is not stimulated. T likely the result of an increase in the affinity of troponin C for calcium (159, 10), the slowly developing increase
in force is probably the result of a change in the amount
of calcium released by the SR (189, 84, 10). Th U for calcium (159, 10), the slowly developing increase
in force is probably the result of a change in the amount
of calcium released by the SR (189, 84, 10). The binding
of calcium by troponin C activates the sliding fila of calcium released by the SR (189, 84, 10). The binding
of calcium by troponin C activates the sliding filament
system, and the muscle contracts. Relaxation results
from the active uptake of calcium by the longitudinal
p of calcium by troponin C activates the sliding filament system, and the muscle contracts. Relaxation results from the active uptake of calcium by the longitudinal parts of the sarcoplasmic reticulum, from where it is retur SR). om the active uptake of calcium by the longitudinal calciunts of the sarcoplasmic reticulum, from where it is contriumed with some delay to the release sites (junctional pender).

(3). During the plateau of the action pote

parts of the sarcoplasmic reticulum, from where it is constrained with some delay to the release sites (junctional perception of the action potential, calcium site flows from the extracellular space into the cell with the returned with some delay to the release sites (junctional ISR).

SR).

During the plateau of the action potential, calcium

flows from the extracellular space into the cell with the

second (slow) inward current (I_{ai}) . T SR).

During the plateau of the action potential, calcium

flows from the extracellular space into the cell with the

second (slow) inward current (I_{xi}) . This current differs

from the (fast) sodium current in having slo During the plateau of the action potential, calcium
flows from the extracellular space into the cell with the
second (slow) inward current (I_{xi}) . This current differs
from the (fast) sodium current in having slower kinet flows from the extracellular space into the cell with second (slow) inward current (I_{xi}) . This current different (fast) sodium current in having slower kine and different voltage dependence (for review, see 329). The slo second (slow) inward current (I_{xi}) . This current differs
from the (fast) sodium current in having slower kinetics
and different voltage dependence (for review, see ref.
329). The slow inward current is increased by catec from the (fast) sodium current in having slower kinetics
and different voltage dependence (for review, see ref.
329). The slow inward current is increased by catechol-
amines and produces a "slow action potential" if the and different voltage dependence (for review, see ref. 329). The slow inward current is increased by catechol-
amines and produces a "slow action potential" if the fast
sodium current is prevented by partial depolarizatio 329). The slow inward current is increased by catecholamines and produces a "slow action potential" if the fast calcordium current is prevented by partial depolarization ideal (302). The second inward current (I_{ci}) may c amines and produces a "slow action potential" if the fast capable
sodium current is prevented by partial depolarization ident tl
(302). The second inward current (I_{ci}) may consist not be rega
of calcium current (I_{Cs}) al

and V A). I_{C_a} flows through special channels with a relatively long-lasting activity. These channels have been relatively long-lasting activity. These channels with a relatively long-lasting activity. These channels have been
designated as L-type channels, in contrast to newly and V A). I_{Ca} flows through special channels with a relatively long-lasting activity. These channels have been designated as L-type channels, in contrast to newly observed channels $(20, 289, 269)$ with a short activit and V A). I_{C_a} flows through special channels with a relatively long-lasting activity. These channels have been designated as L-type channels, in contrast to newly observed channels (20, 289, 269) with a short activity relatively long-lasting activity. These channels have been
designated as L-type channels, in contrast to newly
observed channels (20, 289, 269) with a short activity of
a markedly transient time course (T-type Ca channels) relatively long-lasting activity. These channels have been
designated as L-type channels, in contrast to newly
observed channels (20, 289, 269) with a short activity of
a markedly transient time course (T-type Ca channels) designated as L-type channels, in contrast to new observed channels (20, 289, 269) with a short activity a markedly transient time course (T-type Ca channel T-channel current is much smaller and decays mumore quickly than observed channels (20, 289, 269) with a short activity of
a markedly transient time course (T-type Ca channels).
T-channel current is much smaller and decays much
more quickly than L-type channel current, so it contri-
but a markedly transient time course (T-type Ca channels).
T-channel current is much smaller and decays much
more quickly than L-type channel current, so it contri-
butes relatively little to Ca influx during the action
potent T-channel current is much smaller and decays much
more quickly than L-type channel current, so it contri-
butes relatively little to Ca influx during the action
potential plateau. Since T-type channels are activated at
rel more quickly than L-type channel current, so it concludes relatively little to Ca influx during the activate potential plateau. Since T-type channels are activate relatively negative potentials, they are thought to h funct butes relatively little to Ca influx during the action potential plateau. Since T-type channels are activated at relatively negative potentials, they are thought to have functional significance mainly for pacemaker depolar potential plateau. Since T-type c
relatively negative potentials, th
functional significance mainly f
zation and action potential initia
spontaneous activity (20, 289).
Most of the inflowing calciu latively negative potentials, they are thought to have
nctional significance mainly for pacemaker depolari-
tion and action potential initiation in cells capable of
ontaneous activity (20, 289).
Most of the inflowing calci functional significance mainly for pacemaker depolarization and action potential initiation in cells capable of spontaneous activity (20, 289).
Most of the inflowing calcium is taken up by the sarcoplasmic reticulum and s

zation and action potential initiation in cells capable of
spontaneous activity (20, 289).
Most of the inflowing calcium is taken up by the
sarcoplasmic reticulum and stored, after some delay, in
its release compartments (spontaneous activity (20, 289).

Most of the inflowing calcium is taken up by the

sarcoplasmic reticulum and stored, after some delay, in

its release compartments (324; see section III A). The

loading effect of each act Most of the inflowing calcium is taken up by sarcoplasmic reticulum and stored, after some delay, its release compartments (324) ; see section III A). To loading effect of each action potential is opposed by net extrusio sarcoplasmic reticulum and stored, after some delay, in
its release compartments (324; see section III A). The
loading effect of each action potential is opposed by a
net extrusion of calcium from the cell through sodiumits release compartments (324; see section III A).
loading effect of each action potential is opposed
net extrusion of calcium from the cell through sod
calcium exchange (see section V A) and partly b
ATP-dependent Ca pump loading effect of each action potential is opposed by a
net extrusion of calcium from the cell through sodium-
calcium exchange (see section V A) and partly by an
ATP-dependent Ca pump (see section VI). Sodium-cal-
cium ex net extrusion of calcium from the cell through sodium-
calcium exchange (see section V A) and partly by an
ATP-dependent Ca pump (see section VI). Sodium-cal-
cium exchange plays a special role in the regulation of
Ca move calcium exchange (see section V A) and partly by an ATP-dependent Ca pump (see section VI). Sodium-calcium exchange plays a special role in the regulation of Ca movements through the sarcolemma (for review, see ref. 32). ATP-dependent Ca pump (see section VI). Sodium-calcium exchange plays a special role in the regulation of Ca movements through the sarcolemma (for review, see ref. 32). Since this exchange is electrogenic, Ca transport eit cium exchange plays a special role in the regulation of Ca movements through the sarcolemma (for review, see ref. 32). Since this exchange is electrogenic, Ca transport either to the outside or the inside depends on membra Ca movements throu
ref. 32). Since this ex-
either to the outside of
potential and the intra
Ca (see section V).
Calcium leaks during f. 32). Since this exchange is electrogenic, Ca transpointer to the outside or the inside depends on membran tential and the intracellular concentrations of Na an $($ see section V $)$. Calcium leaks during rest from the sa

etther to the outside or the inside depends on memorane
potential and the intracellular concentrations of Na and
Ca (see section V).
Calcium leaks during rest from the sarcoplasmic retic-
ulum of cardiac muscle (108, 210), potential and the intracentuar concentrations of Na and
Ca (see section V).
Calcium leaks during rest from the sarcoplasmic retic-
ulum of cardiac muscle (108, 210), at a rate which is
influenced by the resting membrane po Calcium leaks during rest from the sarcoplasmic retic-
ulum of cardiac muscle (108, 210), at a rate which is
influenced by the resting membrane potential (399; sec-
tion IV C). The calcium content of the store (release
com ulum of cardiac muscle (108, 210), at a rate which is
influenced by the resting membrane potential (399; sec-
tion IV C). The calcium content of the store (release
compartment) therefore depends, at a given resting po-
te influenced by the resting membrane potential (399; section IV C). The calcium content of the store (release compartment) therefore depends, at a given resting potential, on the frequency and pattern of stimulation. In vent tion IV C). The calcium content of the store (release compartment) therefore depends, at a given resting potential, on the frequency and pattern of stimulation. In ventricular muscle from most mammalian species (there are sarcoplasmic reticulum and stored, after some delay, in
its release compartments (324; see section III A). The
loading effect of each action potential is opposed by a
net extrusion of calcium from the cell through sodiumtential, on the frequency and pattern of stimulation. In ventricular muscle from most mammalian species (there are some exceptions like that of the rat, but see section VI B), the store will be empty after a period of 5 to ventricular muscle from most mammalian species (there are some exceptions like that of the rat, but see section VI B), the store will be empty after a period of 5 to 10 min during which the muscle is not stimulated. Then, are some exceptions like that of the rat, but see section VI B), the store will be empty after a period of 5 to 10 min during which the muscle is not stimulated. Then, total calcium content of the cardiac muscle has droppe v1 B), the store will be empty after a period of 5 to 10

min during which the muscle is not stimulated. Then,

total calcium content of the cardiac muscle has dropped

to one-fourth of its steady-state value (241), and m (6) to one-fourth of its steady-state value (241), and most of the regions corresponding presumably to junctional SR are found "empty" of calcium by X-ray microanalysis (413, 412). As the muscle is continuously stimulated, the regions corresponding presumably to junctions
are found "empty" of calcium by X-ray microans
(413, 412). As the muscle is continuously stimulated
calcium release from the store and consequently
contractile force will i are found "empty" of calcium by X-ray microanalysis $(413, 412)$. As the muscle is continuously stimulated, the calcium release from the store and consequently the contractile force will increase until the frequency-depen $(413, 412)$. As the muscle is continuously stimulated, t calcium release from the store and consequently t contractile force will increase until the frequency-d pendent steady state is reached. As more of it is release c calcium release from the store and consequently the contractile force will increase until the frequency-dependent steady state is reached. As more of it is released, calcium becomes more effective in increasing the potassi contractile force will increase until the frequency-de-
pendent steady state is reached. As more of it is released
calcium becomes more effective in increasing the potas-
sium conductance of the cellular membrane (185, 351 pendent steady state is reached. As more of it is released,
calcium becomes more effective in increasing the potas-
sium conductance of the cellular membrane (185, 351,
65); this leads to an abbreviation of the action pote calcium becomes more effective in increasing the pot
sium conductance of the cellular membrane (185, 3
65); this leads to an abbreviation of the action potent
(184, 18) and thereby to a negative feedback in regard
calcium tial. (i); this leads to an abbreviation of the action potential 84 , 18) and thereby to a negative feedback in regard to lcium loading during the plateau of the action poten-
al.
The fact that so many regulatory mechanisms ar

(184, 18) and thereby to a negative feedback in regard to calcium loading during the plateau of the action potential.
The fact that so many regulatory mechanisms are capable of influencing cardiac contractility makes it e calcium loading during the plateau of the action potential.

The fact that so many regulatory mechanisms are

capable of influencing cardiac contractility makes it ev-

ident that a number of different cellular structures tial.
The fact that so many regulatory mechanisms are
capable of influencing cardiac contractility makes it ev-
ident that a number of different cellular structures may
be regarded as sites of contractile control and there The fact that so many regulatory mechanisms are
capable of influencing cardiac contractility makes it ev-
ident that a number of different cellular structures may
be regarded as sites of contractile control and therefore
 ident that a number of different cellular structures may
be regarded as sites of contractile control and therefore
as likely sites of pharmacological interaction. These are
mainly: (a) the sarcolemma because of its role i

PHARMACOLOGICAL REVIEW

aspet

192
Ca uptake and elimination [sodium- and potential-de-
pendent Na-Ca exchange, potential-dependent Ca cur- the sur RE
Ca uptake and elimination [sodium- and potential-de-
pendent Na-Ca exchange, potential-dependent Ca cur-
rent, calcium release, and the Ca pump (Ca²⁺-transport 192
Ca uptake and elimination [sodium- and potential-d
pendent Na-Ca exchange, potential-dependent Ca cu
rent, calcium release, and the Ca pump $(Ca^{2+}$ -transport
ATPase)]; (b) the intracellular compartments—the sa Ca uptake and elimination [sodium- and potential-de-
pendent Na-Ca exchange, potential-dependent Ca cur-
rent, calcium release, and the Ca pump (Ca²⁺-transport (
ATPase)]; (b) the intracellular compartments—the sar-
copl pendent Na-Ca exchange, potential-dependent Ca current, calcium release, and the Ca pump (Ca²⁺-transport (ATPase)]; (*b*) the intracellular compartments—the sarcoplasmic reticulum (with Ca uptake and release mechanisms) rent, calcium release, and the Ca pump (Ca²⁺-transport ATPase)]; (b) the intracellular compartments—the sar-
coplasmic reticulum (with Ca uptake and release mech-
anisms) and the mitochondria (Ca buffer); (c) Ca-binding
 ATPase)]; (b) the intracellular compartments—the sar-
coplasmic reticulum (with Ca uptake and release mech-
anisms) and the mitochondria (Ca buffer); (c) Ca-binding
"modulator" proteins (e.g., calmodulin); and (d) the mycoplasmic remisms) and

"modulator"

ofilaments v

to calcium.

III Incre Incolution and the Indian Calcium, $\langle e, g, e \rangle$ (d) the my
filaments with possible changes of their responsiveness
co calcium.
III. Increase of Calcium Influx through Voltage-
dependent Channels by Catecholamines of ilaments with possible changes of their responsiveness
to calcium.
III. Increase of Calcium Influx through Voltage-
dependent Channels by Catecholamines

III. Increase of Calcium Influx through Voltage-
dependent Channels by Catecholamines
Calcium uptake in electrically stimulated heart muscle
is increased under the influence of epinephrine (326).
This effect is exerted dependent Channels by Catecholamines

calcium uptake in electrically stimulated heart muscle

is increased under the influence of epinephrine (326).

This effect is exerted through a β -adrenoceptor-induced

increase in Calcium uptake in electrically stimulated heart muscle
is increased under the influence of epinephrine (326).
This effect is exerted through a β -adrenoceptor-induced
increase in I_{Ca} (327, 328, 393) which results fro is increased under the influence of epinephrine (326). relations of the sarcted through a β -adrenoceptor-induced responces in I_{Ca} (327, 328, 393) which results from a from lengthening of the mean open time of activa This effect is exerted through a β -adrenoceptor-induced reincrease in I_{Ca} (327, 328, 393) which results from a frequenchening of the mean open time of activated (L-type) sincalcium channels in the sarcolemma (331). increase in I_{Ca} (327, 328, 393) which results from a from
lengthening of the mean open time of activated (L-type) sim
calcium channels in the sarcolemma (331). I_{Ca} can be at inhibited by various calcium channel bloc lengthening of the mean open time of activated $(L$ -type) sincalcium channels in the sarcolemma (331) . L_{ca} can be at inhibited by various calcium channel blockers (129) . The poinfluence of the increase in Ca influx calcium channels in the sarcolemma (331) . L_{ca} can be at
inhibited by various calcium channel blockers (129) . The po
influence of the increase in Ca influx on contraction can
be demonstrated very clearly when the Ca inhibited by various calcium channel blockers (129) . The pointleance of the increase in Ca influx on contraction can
be demonstrated very clearly when the Ca store of the restroplasmic reticulum is empty and, accordingl influence of the increase in Ca influx on contraction can
be demonstrated very clearly when the Ca store of the
sarcoplasmic reticulum is empty and, accordingly, the
force of contraction is negligibly small as in rested st be demonstrated very clearly when the Ca store of the relations in the exceptions, the force of contraction is negligibly small as in rested state a scontractions of cardiac ventricular muscle from most sloman malian spec sarcopiasmic reforce of contract
contractions of
mammalian spe
section VI B). contractions of cardiac ventricular muscle from most
mammalian species (213; regarding the exceptions, see
section VI B).
A. Late and Early Rested State Contractions

Rested state contractions are defined as contractions
preceded by intervals of rest long enough that the section VI B). Frequency intervals of restead State Contractions contractions contractions contractions fills of rest long enough that the contraction of previous beats the strength of contraction is independent of previou A. Late and Early Rested State Contractions

Rested state contractions are defined as contractions

preceded by intervals of rest long enough that the

strength of contraction is independent of previous beats

(38). It is (38). It is characteristic for the small rested state con-

strength of contraction is independent of previous beats

(38). It is characteristic for the small rested state con-

tractions of mammalian ventricular muscle th preceded by intervals of rest long enough that the strength of contraction is independent of previous beats (38). It is characteristic for the small rested state contractions of mammalian ventricular muscle that peak force strength of contraction is independent of previous beats

(38). It is characteristic for the small rested state con-

tractions of mammalian ventricular muscle that peak

force is achieved relatively late after stimulation (38). It is characteristic for the small rested state con-
tractions of mammalian ventricular muscle that peak
force is achieved relatively late after stimulation $(7, 8)$.
Catecholamines increase the late peak of rested tractions of mammalian ventricular muscle that peak
force is achieved relatively late after stimulation $(7, 8)$.
Catecholamines increase the late peak of rested state
contractions $(344, 345, 24)$. This is also true of t Catecholamines increase the late peak of rested state
contractions (344, 345, 24). This is also true of the
dibutyryl derivative of cyclic adenosine monophosphate
(cyclic AMP) (379, 344, 345), 8-substituted cyclic AMF
anal contractions (344, 345, 24). This is also true of
dibutyryl derivative of cyclic adenosine monophosph
(cyclic AMP) (379, 344, 345), 8-substituted cyclic A
analogues (220), and phosphodiesterase inhibitors (
feine, 40, 240; dibutyryl derivative of cyclic adenosine monophosphate

(cyclic AMP) (379, 344, 345), 8-substituted cyclic AMP

analogues (220), and phosphodiesterase inhibitors (caf-

feine, 40, 240; theophylline, 24; amrinone, 173; pimo (cyclic AMP) (379, 344, 345), 8-substituted cyclic AMP no
analogues (220), and phosphodiesterase inhibitors (caf-
feine, 40, 240; theophylline, 24; amrinone, 173; pimoben-
dane, UD-CG-115, 168; OPC-8212, 380). As is illus analogues (220), and phosphodiesterase inhibitors (caf-
feine, 40, 240; theophylline, 24; amrinone, 173; pimoben-
dane, UD-CG-115, 168; OPC-8212, 380). As is illustrated
in figs. 1a, 2, and 3, the rested state contraction feine, 40, 240; theophylline, 24; amrinone, 173; pimoben-
dane, UD-CG-115, 168; OPC-8212, 380). As is illustrated
in figs. 1a, 2, and 3, the rested state contraction of the
guinear pig papillary muscle under the influence dane, UD-CG-115, 168; OPC-8212, 380). As is illustrated cific in figs. 1*a*, 2, and 3, the rested state contraction of the contraction at physiological frequencies. Force starts to rise soon after stimulation and the upst in figs. 1a, 2, and 3, the rested state contraction of the compute pig papillary muscle under the influence of a excate cholamine has a time course quite unlike that of the IV contractions at physiological frequencies. Fo guinea pig papillary muscle under the influence of cate cholamine has a time course quite unlike that of contractions at physiological frequencies. Force start rise soon after stimulation and the upstroke of the act potent catecholamine has a time course quite unlike that of the contractions at physiological frequencies. Force starts to rise soon after stimulation and the upstroke of the action potential in both cases, but in the rested stat contractions at physiological frequencies. Force starts to
rise soon after stimulation and the upstroke of the action
potential in both cases, but in the rested state contrac-
tion, it rises very slowly at first. Then, som rise soon after stimulation and the upstroke of the acceptotential in both cases, but in the rested state cont
tion, it rises very slowly at first. Then, some 100 ms at
the stimulus, there is an inflection point, after whi potential in both cases, but in the rested state contraction, it rises very slowly at first. Then, some 100 ms after the stimulus, there is an inflection point, after which the force rises much more rapidly to the late pea tion, it rises very slowly at first. Then, some 100 ms after the stimulus, there is an inflection point, after which the force rises much more rapidly to the late peak characteristic of the rested state contraction. In wha the stimulus, there is an inflection point, after which the
force rises much more rapidly to the late peak character-
istic of the rested state contraction. In what follows I
shall refer to the time to the inflection point force rises much more rapidly to the late peak characteristic of the rested state contraction. In what follows I
shall refer to the time to the inflection point as the *latent*
period of the rested state contraction. There istic of the rested state contraction. In what follow
shall refer to the time to the inflection point as the *lat*
period of the rested state contraction. There has be
some debate about the mechanisms underlying the lat
pe shall refer to the time to the inflection point as the *latent*
period of the rested state contraction. There has been
some debate about the mechanisms underlying the latent
period and the peculiar shape of the rested stat period of the rested state contraction. There has been
some debate about the mechanisms underlying the latent
period and the peculiar shape of the rested state contraction.
Some have suggested that the slow rise and delay

to calcium.

III. Increase of Calcium Influx through Voltage-

dependent Channels by Catecholamines

Calcium uptake in electrically stimulated heart muscle

is increased under the influence of epinephrine (326).

The same the basis of the time required for the diffusion of Ca from the surface membrane to the myofibrils. However, others ER
the basis of the time required for the diffusion of Ca fi
the surface membrane to the myofibrils. However, oth
(ref. 8), including the author, believe that this interpretation
is not sufficient to explain either the exi Intertual to the time required for the diffusion of Ca from
the surface membrane to the myofibrils. However, others
(ref. 8), including the author, believe that this interpre-
tation is not sufficient to explain either the the surface membrane to the myofibrils. However, others
(ref. 8), including the author, believe that this interpre-
tation is not sufficient to explain either the existence of
the inflection point, or the virtual constancy the surface membrane to the myofibrils. However, others
(ref. 8), including the author, believe that this interpre-
tation is not sufficient to explain either the existence of
the inflection point, or the virtual constancy (ref. 8), including the author, believe that this interpre-
tation is not sufficient to explain either the existence of
the inflection point, or the virtual constancy of the latent
period (regardless of the amplitude of th tation is not sufficient to explain either the existence of
the inflection point, or the virtual constancy of the latent
period (regardless of the amplitude of the delayed peak)
illustrated in fig. 2. We feel that these fe the inflection point, or the virtual constancy of the laten
period (regardless of the amplitude of the delayed peak
illustrated in fig. 2. We feel that these features of th
rested state contraction (and a number of others illustrated in fig. 2. We feel that these features of the rested state contraction (and a number of others that will be discussed in the pages to follow) are most plausibly explained by assuming that most of the calcium en illustrated in fig. 2. We feel that these features of the rested state contraction (and a number of others that will be discussed in the pages to follow) are most plausibly explained by assuming that most of the calcium en rested state contraction (and a number of others that
will be discussed in the pages to follow) are most plau-
sibly explained by assuming that most of the calcium
entering the cell during the action potential is first
seq will be discussed in the pages to follow) are most plausibly explained by assuming that most of the calcium
entering the cell during the action potential is first
sequestered by some intracellular store (presumably a
compo sibly explained by assuming that most of the calcium
entering the cell during the action potential is first
sequestered by some intracellular store (presumably a
component of the sarcoplasmic reticulum), and then
released entering the cell during the action potential is first sequestered by some intracellular store (presumably a component of the sarcoplasmic reticulum), and then released again after a mandatory delay which may represent th sequestered by some intracellular store (presumably a
equestered by some intracellular store (presumably and then
component of the sarcoplasmic reticulum), and then
released again after a mandatory delay which may rep-
re component or the sarcoplasmic reticulum), and then
released again after a mandatory delay which may rep-
resent the time required for translocation of calcium
from uptake sites to release sites within the SR. (A
similar de resent the time required for translocation of calcium
from uptake sites to release sites within the SR. (A
similar delay is manifest in the restitution curve observed
at higher frequencies of contraction, when the action
p from uptake sites to release sites within the SR. (A
similar delay is manifest in the restitution curve observed
at higher frequencies of contraction, when the action
potential is considerably briefer: very little force is similar delay is manifest in the restitution curve observed thigher frequencies of contraction, when the action
potential is considerably briefer: very little force is deloped during closely coupled extrasystoles, even tho at higher frequencies of contraction, when the action
potential is considerably briefer: very little force is de-
veloped during closely coupled extrasystoles, even though
relaxation from the preceding beat is complete and potential is considerably briefer: very little force is developed during closely coupled extrasystoles, even though
relaxation from the preceding beat is complete and there-
fore the SR must contain the calcium required to veloped during closely coupled extrasystoles, even though
relaxation from the preceding beat is complete and there-
fore the SR must contain the calcium required to activate
a strong contraction.) In rested state contracti relaxation from the preceding beat is complete and there-
fore the SR must contain the calcium required to activate
a strong contraction.) In rested state contractions the
slow phase of force development before the inflec a strong contraction.) In rested state contractions the
slow phase of force development before the inflection
point may represent the effect of Ca^{2+} entering the cell
from the extracellular space and acting directly on slow phase of force development before the inflection
point may represent the effect of Ca^{2+} entering the cel
from the extracellular space and acting directly on th
myofilaments. During this phase of the contraction th from the extracellular space and acting directly on the myofilaments. During this phase of the contraction the sarcoplasmic reticulum will be competing with the myofilaments for the entering Ca^{2+} . The late peak of the from the extracentuar space and acting urectly on the
myofilaments. During this phase of the contraction the
sarcoplasmic reticulum will be competing with the myo-
filaments for the entering Ca^{2+} . The late peak of the
 sarcopiasmic reticulum will be competing with the myo-
filaments for the entering Ca^{2+} . The late peak of the
contraction occurs only if the action potential outlasts
the mandatory delay period and causes the release of filaments for the entering Ca^{2+} . The late peak of the contraction occurs only if the action potential outlasts the mandatory delay period and causes the release of some of the Ca^{2+} sequestered by the SR during the l contraction occurs only if the action potential outlasts
the mandatory delay period and causes the release of
some of the Ca²⁺ sequestered by the SR during the latent
period. It seems likely, therefore, that the delayed me of the Ca²⁺ sequestered by the SR during the latent riod. It seems likely, therefore, that the delayed release calcium must be under the control of the membrane tential, as is the initial release.
That the calcium re

period. It seems likely, therefore, that the delayed release
of calcium must be under the control of the membrane
potential, as is the initial release.
That the calcium responsible for the rested state con-
traction in fig of calcium must be under the control of the membrane
potential, as is the initial release.
That the calcium responsible for the rested state con-
traction in fig. 1a came from the extracellular space and
not from an intrac potential, as is the initial release.

That the calcium responsible for the rested state con-

traction in fig. 1*a* came from the extracellular space and

not from an intracellular store can be deduced from the

fact tha I hat the calcium responsible for the rested state con-
traction in fig. 1a came from the extracellular space and
not from an intracellular store can be deduced from the
fact that the contraction was completely abolished b not from an intracellular store can be deduced from the
fact that the contraction was completely abolished by
the 1,4-dihydropyridine derivative nifedipine, which spe-
cifically blocks L-type calcium channels (214, 20, 289 fact that the contraction was completely abolished by
the 1,4-dihydropyridine derivative nifedipine, which spe-
cifically blocks L-type calcium channels (214, 20, 289) at
concentrations more than 100-fold higher (237a) th the 1,4-dihydropyridine derivative nifedipine, which specifically blocks L-type calcium channels (214, 20, 289) at concentrations more than 100-fold higher (237a) than expected from radioligand binding (23a, 165a; see sect

FIG. 1. Different effects of the calcium channel blocker nifedipine (1 Mm)

(1 Mmol/liter) on rested state contractions of the same guinea pig

(1 μ mol/liter) on rested state contractions of the same guinea pig

papillary muscle under the influence of either norepinephrine (30 μ mol/ 100 ms

FIG. 1. Different effects of the calcium channel blocker nifedipine

(1 μ mol/liter) on rested state contractions of the same guinea pig

papillary muscle under the influence of either norepinephrine (30 μ mol FIG. 1. Different effects of the calcium channel blocker nifedipine (1 μ mol/liter) on rested state contractions of the same guinea pig papillary muscle under the influence of either norepinephrine (30 μ mol/liter) (a

CALCIUM MOBILIZATION AND CARDIAC INOTROPIC MECHANISMS ¹⁹³

the case with a distinctly use-dependent Ca channel CALCIUM MOBILIZATION AND C.
the drug at the applied concentration was fully effective
even after a long rest period (which might not have been
the case with a distinctly use-dependent Ca channel
blocker, such as verapamil, the drug at the applied concentration was fully effective even after a long rest period (which might not have been the case with a distinctly use-dependent Ca channel blocker, such as verapamil, as shown in fig. 5 of ref. the drug at the applied concentration was fully effective up
even after a long rest period (which might not have been
the case with a distinctly use-dependent Ca channel co
blocker, such as verapamil, as shown in fig. 5 of even after a long rest period (which might not have been
the case with a distinctly use-dependent Ca channel
blocker, such as verapamil, as shown in fig. 5 of ref. 46).
Fig. 1b shows a rested state contraction of the same
 the case with a distinctly use-dependent Ca chand blocker, such as verapamil, as shown in fig. 5 of ref. 4 Fig. 1b shows a rested state contraction of the samuscle in low sodium solution. Studies with radioact tracers had blocker, such as verapamil, as shown in fig. 5 of ref. 46).
Fig. 1b shows a rested state contraction of the same consider in low sodium solution. Studies with radioactive stracers had shown that, at low external sodium co Fig. 1b shows a rested state contraction of the same dimuscle in low sodium solution. Studies with radioactive shared tracers had shown that, at low external sodium concentrations, the calcium influx increases (286, 287, 2 muscle in low sodium solution. Studies with radioactive tracers had shown that, at low external sodium concentrations, the calcium influx increases (286, 287, 233) while the calcium efflux diminishes (330), thus leading to tracers had shown that, at low external sodium concentrations, the calcium influx increases (286, 287, 233) while the calcium efflux diminishes (330), thus leading to a net increase of intracellular Ca (see section V) and, trations, the calcium influx increases $(286, 287, 233)$ tions while the calcium efflux diminishes (330) , thus leading contraction and the rest period and accordingly, to a filled Ca store of the sarcoplasmic of reticul while the calcium efflux diminishes (330), thus leading
to a net increase of intracellular Ca (see section V) and,
accordingly, to a filled Ca store of the sarcoplasmic
reticulum. The first contraction after the rest perio we a net increase of intracemuar Ca (see section v) and,
accordingly, to a filled Ca store of the sarcoplasmic
reticulum. The first contraction after the rest period
started without any delay after stimulation (see also re reticulum. The first contraction after the rest period the started without any delay after stimulation (see also ref. no 3) and reached its peak at a time when the contraction sp in normal Na was just beginning. In low Na started without any delay after stimulation (see also ref. normal 3) and reached its peak at a time when the contraction speed in normal Na was just beginning. In low Na solution, that infedipine had no influence on the as 3) and reached its peak at a time when the contraction sp
in normal Na was just beginning. In low Na solution, the
nifedipine had no influence on the ascending slope of the
contraction curve; it only shortened the contrac in normal Na was just beginning. In low Na solution, that the infedipine had no influence on the ascending slope of the contraction curve; it only shortened the contraction in fects of accordance with a shortening of the d nifedipine had no influence on the ascending slope of the contraction curve; it only shortened the contraction is accordance with a shortening of the duration of the action potential. The lack of influence of the calcium c in a concentration which completed the contraction in the accordance with a shortening of the duration of the leadium channel blocker on the velocity of the early contraction, see contraction in the presence of norepinephr action potential. The lack of influence of the calcium
channel blocker on the velocity of the early contraction,
in a concentration which completely inhibited the late
contraction in the presence of norepinephrine, shows
t channel blocker on the velocity of the early contraction, seeing in a concentration which completely inhibited the late montraction in the presence of norepinephrine, shows that the dihydropyridine-sensitive Ca current was in a concentration which completely inhibited the late
contraction in the presence of norepinephrine, shows the
that the dihydropyridine-sensitive Ca current was not
involved in this contraction. A comparable finding was
 contraction in the presence of norephrephrine, shows
that the dihydropyridine-sensitive Ca current was not
involved in this contraction. A comparable finding was
made by Mascher (fig. 3 of ref. 252) using partially
depolar involved in this contraction. A comparable finding was
made by Mascher (fig. 3 of ref. 252) using partially
depolarized (18.9 mmol/liter of KCl) field-stimulated cat
papillary muscles. These responded to threshold stimu-
l made by Mascher (fig. 3 of ref. 252) using partially the depolarized (18.9 mmol/liter of KCl) field-stimulated cat per papillary muscles. These responded to threshold stimulation with either regenerative or nonregenerativ depolarized (18.9 mmol/liter of KCl) field-stimulated of papillary muscles. These responded to threshold stimulation with either regenerative or nonregenerative (locelectrical responses which were accompanied by a we late papillary muscles. These responded to threshold stinution with either regenerative or nonregenerative (look electrical responses which were accompanied by a whate contraction. In low-sodium solution even nor generative ele relation with either regenerative of homegenerative (focal
electrical responses which were accompanied by a weal
late contraction. In low-sodium solution even nonre
generative electrical responses elicited strong contracti electrical responses which were accompanied by a weak
late contraction. In low-sodium solution even nonre-
generative electrical responses elicited strong contrac-
tions which appeared early after stimulation. The acti-
va late contraction. In low-sodium solution even nonre-
generative electrical responses elicited strong contrac-
tions which appeared early after stimulation. The acti-
vation of slow (calcium-dependent) potentials, therefore generative electrical responses elicited strong contrac-
tions which appeared early after stimulation. The activation of slow (calcium-dependent) potentials, therefore, pig
was not necessary as a trigger for calcium relea tions which appeared early after stimulation. The a
vation of slow (calcium-dependent) potentials, therefore was not necessary as a trigger for calcium release. Un
the influence of ouabain which causes an increase
intracel vation of slow (calcium-dependent) potentials, therefore, was not necessary as a trigger for calcium release. Under the influence of ouabain which causes an increase in blocke intracellular calcium (see section V B), stro was not necessary as a trigger for calcium release. Under
the influence of ouabain which causes an increase in
intracellular calcium (see section V B), strong contrac-
tions could be induced in spite of an inhibition of the infrace of ouaballit which causes an increase in
intracellular calcium (see section V B), strong contrac-
potentials by the calcium channel blocker verapamil
(382). With skeletal muscle, a comparable observation
was ma tions could be induced in spite of an inhibition of slow
potentials by the calcium channel blocker verapamil
(382). With skeletal muscle, a comparable observation
was made by Ildefonse et al. (181), who found that frog
sem potentials by the calcium channel blocker verapamil (382). With skeletal muscle, a comparable observation was made by Ildefonse et al. (181), who found that from a holding semitendinosus fibers developed biphasic contract (382). With skeletal muscle, a comparable observation
was made by Ildefonse et al. (181), who found that from
semitendinosus fibers developed biphasic contractions
during long-lasting clamp depolarizations from a holding
 was made by Ildefonse et al. (181) , who found that frog
semitendinosus fibers developed biphasic contractions
during long-lasting clamp depolarizations from a holding
potential of -90 mV. The first, rapid, phase reach semitendinosus fibers developed biphasic contractions
during long-lasting clamp depolarizations from a holding
potential of -90 mV. The first, rapid, phase reached its
maximum before the activation of an inward calcium
cu during long-lasting clamp depolarizations from a holding potential of -90 mV. The first, rapid, phase reached its maximum before the activation of an inward calcium current. A slow second phase correlated in time with t potential of -90 mV. The first, rapid, phase reached its maximum before the activation of an inward calcium current. A slow second phase correlated in time with the inward current. Nifedipine $(10 \ \mu \text{mol/liter})$ inhibited maximum before the activation of an inward calcium
current. A slow second phase correlated in time with the
inward current. Nifedipine (10 μ mol/liter) inhibited I_{Ca}
and the second contraction component, but not the i current. A slow second phase correlated in time with the iniward current. Nifedipine $(10 \mu \text{mol/liter})$ inhibited I_{Ca} and the second contraction component, but not the initial rapid one. The lack of effect of nifedipine on inward current. Nifedipine (10 μ mol/liter) inhibited I_{Ca}
and the second contraction component, but not the ini-
tial rapid one. The lack of effect of nifedipine on the
initial contraction was confirmed by Neuhaus (28 and the second contraction component, but not the initial rapid one. The lack of effect of nifedipine on the initial contraction was confirmed by Neuhaus (284a), but the author observed that the plateau phase was prolonge tial rapid one. The lack of effect of nifedipine on the initial contraction was confirmed by Neuhaus (284a), but the author observed that the plateau phase was prolonged which led him to suggest that the calcium inward cu itial contraction was confirmed by Neuhaus (284a), be author observed that the plateau phase was prolong
nich led him to suggest that the calcium inward curre
celerates the inactivation of Ca^{2+} release from the S
The q the author observed that the plateau phase was prolonged
which led him to suggest that the calcium inward current
accelerates the inactivation of Ca^{2+} release from the SR.
The question of whether the latent period of t

which led him to suggest that the calcium inward current
accelerates the inactivation of Ca^{2+} release from the SR.
The question of whether the latent period of the rested-
state contraction under the influence of catec accelerates the inactivation of Ca^{2+} release from the SR.
The question of whether the latent period of the rested-
state contraction under the influence of catecholamines
is the consequence of a slow diffusion of Ca to

the drug at the applied concentration was fully effective uptake into and release from the sarcoplasmic reticulum
even after a long rest period (which might not have been can be answered from the relation of the catecholam UPIAC INOTROPIC MECHANISMS 193
uptake into and release from the sarcoplasmic reticulum
can be answered from the relation of the catecholamine can be answered from the sarcoplasmic reticulum
uptake into and release from the sarcoplasmic reticulum
can be answered from the relation of the catecholamine
concentration to both height and time of appearance of concentration to both height and transfer as increased to and release from the sarcoplasmic reticulum
can be answered from the relation of the cate cholamine
concentration to both height and time of appearance of
the late the late into and release from the sarcoplasmic reticulum
can be answered from the relation of the catecholamine
concentration to both height and time of appearance of
the late peak. If the late peak were the result of a s uptake into and release from the sarcoplasmic reticulum
can be answered from the relation of the catecholamine
concentration to both height and time of appearance of
the late peak. If the late peak were the result of a sim can be answered from the relation of the catecholamine
concentration to both height and time of appearance of
the late peak. If the late peak were the result of a simple
diffusion lag, one would expect the latent period to diffusion lag, one would expect the latent period to shorten with increasing Ca fluxes (assuming linear kinetics of diffusion), since then the threshold concentration of Ca which triggers contraction should be reached cons diffusion lag, one would expect the latent period
shorten with increasing Ca fluxes (assuming linear
netics of diffusion), since then the threshold concent
tion of Ca which triggers contraction should be reac
considerably shorten with increasing Ca fluxes (assuming linear kinetics of diffusion), since then the threshold concentration of Ca which triggers contraction should be reached considerably faster if Ca entry is enhanced by catecholam netics of diffusion), since then the threshold concentra-
tion of Ca which triggers contraction should be reached
considerably faster if Ca entry is enhanced by catechol-
amines. The tracings of fig. 2 show that the latent tion of Ca which triggers contraction should be reached
considerably faster if Ca entry is enhanced by catechol-
amines. The tracings of fig. 2 show that the latent period
of the rested state contraction was not shortened considerably faster if Ca entry is enhanced by catecholamines. The tracings of fig. 2 show that the latent period of the rested state contraction was not shortened when the Ca uptake was more than quadrupled with increasin amines. The tracings of fig. 2 show that the latent period
of the rested state contraction was not shortened when
the Ca uptake was more than quadrupled with increasing
norepinephrine concentrations, as evidenced by the re of the resteal state contraction was not shortened when
the Ca uptake was more than quadrupled with increasing
norepinephrine concentrations, as evidenced by the re-
spective increased Ca inflow was compensated for in its
 norepinephrine concentrations, as evidenced by the respective increase in force of contraction. One could argue
that the increased Ca inflow was compensated for in its
contraction-activating effect by various intracellular spective increase in force of contraction. One could argue
that the increased Ca inflow was compensated for in its
contraction-activating effect by various intracellular ef-
fects of a catecholamine-induced elevation in c that the increased Ca inflow was compensated for in its contraction-activating effect by various intracellular effects of a catecholamine-induced elevation in cyclic AMP levels which occurs in contracting (334) as well as contraction-activating effect by various intracellular effects of a catecholamine-induced elevation in cyclic AMP
levels which occurs in contracting (334) as well as in
resting muscle (92). In particular, a reduction in th fects of a catecholamine-induced elevation in cyclic AM
levels which occurs in contracting (334) as well as i
resting muscle (92). In particular, a reduction in the C
sensitivity of the contractile apparatus (359, 250, 333 levels which occurs in contracting (334) as well as in
resting muscle (92). In particular, a reduction in the Ca
sensitivity of the contractile apparatus (359, 250, 333)
might be supposed to counteract, at least temporaril resting muscle (92). In particular, a reduction in the Ca sensitivity of the contractile apparatus (359, 250, 333) might be supposed to counteract, at least temporarily, the contraction-activating effect of the inflowing C sensitivity of the contractile apparatus (359, 250, 333)
might be supposed to counteract, at least temporarily,
the contraction-activating effect of the inflowing Ca and
thus be responsible for the constancy of the latent might be supposed to counteract, at least temporarily,
the contraction-activating effect of the inflowing Ca and
thus be responsible for the constancy of the latent period.
However, such an interference seems improbable, s the contraction-activating effect of the inflowing Ca and
thus be responsible for the constancy of the latent period.
However, such an interference seems improbable, since
the late peak appears in addition to an early con thus be responsible for the constancy of the latent period.
However, such an interference seems improbable, since
the late peak appears in addition to an early contraction
peak in rested state contractions at low external However, such an interference seems improbable, since
the late peak appears in addition to an early contraction
peak in rested state contractions at low external sodium
concentration. In this situation the contractile syst peak in rested state contractions at low external sodium
concentration. In this situation the contractile system is
already highly activated as a result of calcium release
from a filled storage compartment of the SR; furth peak in rested state contractions at low external sodium
concentration. In this situation the contractile system is
already highly activated as a result of calcium release
from a filled storage compartment of the SR; furth concentration. In this situation the contractile system is
already highly activated as a result of calcium release
from a filled storage compartment of the SR; further-
more, in this case the late, and not the early, peak aready mgmy activated as a result of calcium release
from a filled storage compartment of the SR; further-
more, in this case the late, and not the early, peak is
sensitive to calcium channel blockade by nifedipine (fig.
6 more, in this case the late, and not the early, peak is
sensitive to calcium channel blockade by nifedipine (fig.
6 in Ref. 323). In two-component contractions of a guinea
pig papillary muscle in the presence of norepineph sensitive to calcium channel blockade by nifedipine (fig. 6 in Ref. 323). In two-component contractions of a guinea pig papillary muscle in the presence of norepinephrine at a stimulation frequency of 0.3 Hz, the calcium c 6 in Ref. 323). In two-component contractions of a guinea
pig papillary muscle in the presence of norepinephrine
at a stimulation frequency of 0.3 Hz, the calcium channel
blocker verapamil diminished only the late contr pig papillary muscle in the presence of norepinephrine
at a stimulation frequency of 0.3 Hz, the calcium channel
blocker verapamil diminished only the late contraction
peak (46). Obviously, the development of the late peak at a stimulation frequency of 0.3 Hz, the calcium channel
blocker verapamil diminished only the late contraction
peak (46). Obviously, the development of the late peak
of the rested state contraction is independent of an e blocker verapamil diminished only the late contraction
peak (46). Obviously, the development of the late peak
of the rested state contraction is independent of an early
force generation after stimulation. Furthermore, the that the increased Ca inflow was compensated for in its
contraction-activating effect by various intractellular effects of a catecholamine-induced elevation in cyclic AMP
levels which occurs in contracting (334) as well a of the rested state contraction is independent of an each
force generation after stimulation. Furthermore, the
layed appearance of the late peak did not change i
was increased by the dihydropyridine derivative BAY
8644 ins force generation after stimulation. Furthermore, the de-
layed appearance of the late peak did not change if it
was increased by the dihydropyridine derivative BAY K
8644 instead of a catecholamine (unpublished observa-
ti rent by a direct action on calcium channels without by a direct action on calcium channels without by a direct action on calcium channels without

FIG. 2. Unchanged late appearance of rested state contractions
under the influence of increasing concentrations of norepinephrine (1
to 100 μ mol/liter). The electrical stimuli are marked by the *arrow*. to 100 km 100 fm 100 mS
The electrical stimuli are marked by the *arrow*.
Adapted from Seibel et al. (345).
Adapted from Seibel et al. (345).

194
increasing the intracellular cyclic AMP level (215, 60,
381). 381).

REITER

The constancy of the latent period of the rested state the

ntraction points to the functional involvement of the is increasing the intracellular cyclic AMP level (215, 60, com
381). the constancy of the latent period of the rested state via
contraction points to the functional involvement of the is
sarcoplasmic reticulum. Its dense peri 381).
The constancy of the latent period of the rested state contraction points to the functional involvement of the
sarcoplasmic reticulum. Its dense peripheral networ
which is located immediately subjacent to the cell me The constancy of the latent period of the rested state ventraction points to the functional involvement of the isoarcoplasmic reticulum. Its dense peripheral network function, seems which is located immediately subjacent t contraction points to the functional involvement of the is
sarcoplasmic reticulum. Its dense peripheral network fro
which is located immediately subjacent to the cell mem-
brane, instead of only retarding calcium diffusion sarcoplasmic reticulum. Its dense peripheral network from the cell mem-
which is located immediately subjacent to the cell mem-
brane, instead of only retarding calcium diffusion, seems lii
to act as a diffusion barrier by which is located immediately subjacent to the cell mem-
brane, instead of only retarding calcium diffusion, seems
likely the act as a diffusion barrier by taking up most of the
inflowing Ca, especially under the facilitati brane, instead of only retarding calcium diffusion, seems
to act as a diffusion barrier by taking up most of the
inflowing Ca, especially under the facilitating effect of
cyclic AMP (for reviews, see refs. 385, 342, and 37 to act as a diffusion barrier by taking up most of the inflowing Ca, especially under the facilitating effect expectively cyclic AMP (for reviews, see refs. 385, 342, and 378). corresponding observation regarding extracell inflowing Ca, especially under the facilitating effect of cyclic AMP (for reviews, see refs. 385, 342, and 378). A corresponding observation regarding extracellular calcium transients as measured with tetramethylmurexide w cyclic AMP (for reviews, see refs. 385, 342, and 378). A like corresponding observation regarding extracellular calcium transients as measured with tetramethylmurexide the was made by Hilgemann (161). He found that premat corresponding observation regarding extracellular calcum transients as measured with tetramethylmurexide the was made by Hilgemann (161). He found that premature 202 excitations (i.e., when the calcium release stores are v cium transients as measured with tetramethylmurexide
was made by Hilgemann (161). He found that premature
excitations (i.e., when the calcium release stores are
depleted and the elicited contraction is weak) result in a
pr was made by Hilgemann (161). He found that premature excitations (i.e., when the calcium release stores are depleted and the elicited contraction is weak) result in a prolonged depletion of extracellular calcium due to pro excitations (i.e., when the calcium release stores are voldepleted and the elicited contraction is weak) result in a formula prolonged depletion of extracellular calcium due to prolonged calcium influx. This can be explai depleted and the elicited contraction is weak) result in a
prolonged depletion of extracellular calcium due to pro-
longed calcium influx. This can be explained by internal d
calcium sequestration sufficiently fast to pre prolonged depletion of extracellular calcium due to prolonged calcium influx. This can be explained by interna
calcium sequestration sufficiently fast to prevent the
cytosolic calcium accumulation that would be necessar-
n longed calcium influx. This can be explained by internal divergentiation sequestration sufficiently fast to prevent the correction of calcium accumulation that would be necessary With would of calcium channel inactivation calcium sequestration sufficiently fast to prevent the cytosolic calcium accumulation that would be necessary
not only for activation of contraction but also for initi-
ation of calcium channel inactivation (237), which wo cytosolic calcium accumulation that would be necessary
not only for activation of contraction but also for initi-
ation of calcium channel inactivation (237), which would
obterminate the influx of extracellular calcium. C not only for activation of contraction but also for initiation of calcium channel inactivation (237), which would terminate the influx of extracellular calcium. Consistent with this view is the finding that, in skinned ca ation of calcium channel inactivation (237), which would
terminate the influx of extracellular calcium. Consistent
with this view is the finding that, in skinned cardiac
cells, the SR that is wrapped around individual myo with this view is the finding that, in skinned cardiac cells, the SR that is wrapped around individual myofibrils accumulated calcium rapidly enough to prevent high Ca^{2+} concentrations of externally applied solutions f cells, the SR that is wrapped around individual myofibriac
cumulated calcium rapidly enough to prevent high Ca
concentrations of externally applied solutions from a
tivating the myofilaments (fig. 10 in ref. 120; fig. 7 in accumulated calcium rapidly enough to prevent high to
concentrations of externally applied solutions from
tivating the myofilaments (fig. 10 in ref. 120; fig. 7 in
115). This is analogous to the reaccumulation and m
ment b concentrations of externally applied solutions from activating the myofilaments (fig. 10 in ref. 120; fig. 7 in ref. 115). This is analogous to the reaccumulation and movement back to release sites of Ca during an activat civating the inyomalities (i.g. 10 in fer. 120, i.g. \cdot in 115). This is analogous to the reaccumulation and moment back to release sites of Ca during an activative relaxation cycle in skeletal (312) as well as in mamma 115). This is analogous to the reaccumulation and move-
ment back to release sites of Ca during an activation-
relaxation cycle in skeletal (312) as well as in mammalian
cardiac muscle (275). In the latter, mechanical res ment back to release sites of Ca during an activation-
relaxation cycle in skeletal (312) as well as in mammalian
cardiac muscle (275). In the latter, mechanical restitu-
tion, indicating the transfer of calcium from the u relaxation cycle in skeletal (312) as well as in mammalian cardiac muscle (275). In the latter, mechanical restitution, indicating the transfer of calcium from the uptake sites of the sarcoplasmic reticulum to the release cardiac muscle (275) . In the latter, mechanical restitution, indicating the transfer of calcium from the uptake sites of the sarcoplasmic reticulum to the release store reaches its maximum after 0.7 to 1.0 s $(164,$ tion, indicating the transfer of calcium from the uptake
sites of the sarcoplasmic reticulum to the release store,
reaches its maximum after 0.7 to 1.0 s (164, 97, 311, 419).
Accordingly, the latent period of the rested s sites of the sarcoplasmic reticulum to the release store, reaches its maximum after 0.7 to 1.0 s (164, 97, 311, 419).
Accordingly, the latent period of the rested state contraction can be regarded as an expression of the d reaches its maximum aft
Accordingly, the latent
traction can be regarde
between sequestration of
availability as activator.
B. Tun-Companent Con *B. Two-Component Contraction*
B. Two-Component Contractions
B. Two-Component Contractions
Contractions with two component tween sequestration of inflowing calcium and its first

inflability as activator.

Two-Component Contractions

Contractions with two components, an early and a late

e, sometimes occur during regular stimulation at very

availability as activator.

B. Two-Component Contractions calculation at the common calcular contractions with two components, an early and a late retione, sometimes occur during regular stimulation at very SR

low frequen B. Two-Component Contractions
Contractions with two components, an early and a lat
one, sometimes occur during regular stimulation at ver-
low frequencies (7). The two components become espe-
cially distinct if they are st B. Two-Component Contractions can be contractions of the contractions with two components, an early and a late one, sometimes occur during regular stimulation at very Silow frequencies (7). The two components become espec Contractions with two components, an early and a late
one, sometimes occur during regular stimulation at very
low frequencies (7). The two components become espe-
cially distinct if they are strengthened by the addition of low frequencies (7). The two components become especially distinct if they are strengthened by the addition of less
drugs that increase cyclic AMP levels (328, 344, 345, 22, pec
24, 46, 255, 417, 111, 323, 248). Two-compo cially distinct if they are strengthened by the addition of drugs that increase cyclic AMP levels $(328, 344, 345, 224, 46, 255, 417, 111, 323, 248)$. Two-component contractions can also be observed when the action potent drugs that increase cyclic AMP levels (328, 344, 24, 46, 255, 417, 111, 323, 248). Two-component tions can also be observed when the action pot prolonged after most of the calcium of the bathition has been replaced by stro , 46, 255, 417, 111, 323, 248). Two-component contrac-
nns can also be observed when the action potential is
olonged after most of the calcium of the bathing solu-
n has been replaced by strontium $(56, 207)$.
The two com

tions can also be observed when the action potential is
prolonged after most of the calcium of the bathing solu-
tion has been replaced by strontium (56, 207).
The two components of these contractions should not
be confuse prolonged after most of the calcium of the bathing solution has been replaced by strontium $(56, 207)$.
The two components of these contractions should not the confused with the "phasic" and "tonic" components to of contr tion has been replaced by strontium (56, 207).
The two components of these contractions should not
be confused with the "phasic" and "tonic" components
of contraction observed in frog cardiac muscle during
prolonged depola The two components of these contractions should not the confused with the "phasic" and "tonic" components to of contraction observed in frog cardiac muscle during during the phasic (transient) component has the same covol be confused with the "phasic" and "tonic" components to logical for the contraction observed in frog cardiac muscle during duraprolonged depolarizing clamp pulses (146, 392, 99, 239). prefine the phasic (transient) compon of contraction observed in frog cardiac muscle during
prolonged depolarizing clamp pulses (146, 392, 99, 239).
Since the phasic (transient) component has the same
voltage dependence as the calcium current (175) and
both a prolonged depolarizing clamp pulses $(146, 392, 99, 239)$. P
Since the phasic (transient) component has the same covitage dependence as the calcium current (175) and all
both are inhibited by calcium channel blockers $(M$

increasing the intracellular cyclic AMP level (215, 60, contractions of the frog heart are, in contrast to those of 381).

the mammalian heart, directly activated by Ca entering

The constancy of the latent period of the ER
contractions of the frog heart are, in contrast to those of
the mammalian heart, directly activated by Ca entering ER
contractions of the frog heart are, in contrast to those of
the mammalian heart, directly activated by Ca entering
via I_{Ca}. The generation of tonic (sustained) contractions ER
contractions of the frog heart are, in contrast to those of
the mammalian heart, directly activated by Ca entering
via I_{Ca}. The generation of tonic (sustained) contractions
is attributed to a calcium transfer mechanis contractions of the frog heart are, in contrast to those of
the mammalian heart, directly activated by Ca entering
via I_{Ca} . The generation of tonic (sustained) contractions
is attributed to a calcium transfer mechanism from I_{Ca}. The generation for the influence of sodium on the tonic force of sodium on the tonic force is attributed to a calcium transfer mechanism different from I_{Ca} (99). The influence of sodium on the tonic force de via I_{Ca} . The generation of tonic (sustained) contractions
is attributed to a calcium transfer mechanism different
from I_{Ca} (99). The influence of sodium on the tonic force
development at inside positive potentials m is attributed to a calcium transfer mechanism differe
from I_{Ca} (99). The influence of sodium on the tonic for
development at inside positive potentials makes it see
likely that the tonic components are activated by cal likely that the tonic components are activated by calcium
derived from Na-Ca exchange (391, 87, 11, 176, 82).
In mammalian cardiac muscle a terminal contracture-

with this view is the finding that, in skinned cardiac ing calcium is a matter of discussion. In heart muscle of cells, the SR that is wrapped around individual myofibrils mammals, unlike that of frogs, the contracture fo development at inside positive potentials makes it seem
likely that the tonic components are activated by calcium
derived from Na-Ca exchange (391, 87, 11, 176, 82).
In mammalian cardiac muscle a terminal contracture-
like likely that the tonic components are activated by calcium
derived from Na-Ca exchange (391, 87, 11, 176, 82).
In mammalian cardiac muscle a terminal contracture-
like component is observed if the period of depolarization
o derived from 1va-Ca exchange (351, 87, 11, 170, 82).
In mammalian cardiac muscle a terminal contracture-
like component is observed if the period of depolarization
outlasts the triggered contraction. This is true whether
t In mammanan cardiac muscle a terminal contracture-
like component is observed if the period of depolarization
outlasts the triggered contraction. This is true whether
the action potential is prolonged pharmacologically (2 outlasts the triggered contraction. This is true whether action potential is prolonged pharmacologically (203, 202, 253) or the membrane potential is controlled by voltage clamping (272, 421, 55, 294, 271, 103). It has be outlasts the triggered contraction. This is true whether
the action potential is prolonged pharmacologically (203,
202, 253) or the membrane potential is controlled by
voltage clamping (272, 421, 55, 294, 271, 103). It has the action potential is prolonged pharmacologically (203, 202, 253) or the membrane potential is controlled by voltage clamping (272, 421, 55, 294, 271, 103). It has been found that, during the prolonged depolarization, t 202, 253) or the membrane potential is controlled by voltage clamping (272, 421, 55, 294, 271, 103). It has been found that, during the prolonged depolarization, the tonic component is controlled by both intracellular sod voltage clamping (272, 421, 55, 294, 271, 103). It has been
found that, during the prolonged depolarization, the
tonic component is controlled by both intracellular so-
dium activity (a_{Na}^i) and membrane potential in a found that, during the prolonged depolarization, the tonic component is controlled by both intracellular so-
dium activity $(a_{N_a}^i)$ and membrane potential in a manner
consistent with Na-Ca exchange (103; see section V). tonic component is controlled by both intracellular so-
dium activity $(a^i_{N_a})$ and membrane potential in a manner
consistent with Na-Ca exchange (103; see section V).
Whether the "tonic" contracture-like component is acdium activity (a_{N_a}) and membrane potential in a man
consistent with Na-Ca exchange (103; see section
Whether the "tonic" contracture-like component is
tivated directly by the prolonged transmembrane upt
of calcium or vi consistent with Na-Ca exchange (103; see section V
Whether the "tonic" contracture-like component is *i*
tivated directly by the prolonged transmembrane upta
of calcium or via a sustained release from the intrac
lular stor ing calcium is a matter of discussion. In heart muscle of calcium or via a sustained release from the intracel-
lular store which continuously is sequestering the inflow-
ing calcium is a matter of discussion. In heart mus of calcium or via a sustained release from the intracel-
lular store which continuously is sequestering the inflow-
ing calcium is a matter of discussion. In heart muscle of
mammals, unlike that of frogs, the contracture f lular store which continuously is sequestering the inflowing calcium is a matter of discussion. In heart muscle of mammals, unlike that of frogs, the contracture force of these "tonic" components is usually considerably lo ing calcium is a matter of discussion. In heart muscle of mammals, unlike that of frogs, the contracture force of these "tonic" components is usually considerably lower than the peak force of the triggered contraction (55, mammals, unlike that of frogs, the contracture force of these "tonic" components is usually considerably lower than the peak force of the triggered contraction (55, 253). However, the tonic components may be followed after these "tonic" components is usually considerably lower
than the peak force of the triggered contraction (55, 253).
However, the tonic components may be followed after
repolarization by aftercontractions (103), and the peak than the peak force of the triggered contraction (55, 253).
However, the tonic components may be followed after
repolarization by aftercontractions (103), and the peak
force of the first regular systole after such a "tonic repolarization by aftercontractions (103), and the peak
force of the first regular systole after such a "tonic"
component is always considerably stronger than the con-
tracture force (421).
In contrast, the two-component c repolarization by aftercontractions (103), and the peak
force of the first regular systole after such a "tonic"
component is always considerably stronger than the con-
tracture force (421).
In contrast, the two-component

component is always considerably stronger than the con-
tracture force (421).
In contrast, the two-component contraction of mam-
malian cardiac muscle under the conditions of increased
 I_{C_a} and low frequency stimulatio tracture force (421).
In contrast, the two-component contraction of mam-
malian cardiac muscle under the conditions of increased
 I_{C_a} and low frequency stimulation consists of two distinct
phasic components. Only the e In contrast, the two-component contraction of mam-
malian cardiac muscle under the conditions of increased
 I_{C_a} and low frequency stimulation consists of two distinct
phasic components. Only the early component depends malian cardiac muscle under the conditions of increased I_{C_a} and low frequency stimulation consists of two distinct phasic components. Only the early component depends on the amount of previously stored calcium. There I_{Ca} and low frequency stimulation consists of two distinct
phasic components. Only the early component depends
on the amount of previously stored calcium. There is an
inflection of the force trace after about 100 ms, a phasic components. Only the early component depends
on the amount of previously stored calcium. There is an
inflection of the force trace after about 100 ms, and we
interpret this to be the point at which the inflowing
cal on the amount of previously stored calcium. There is an inflection of the force trace after about 100 ms, and we interpret this to be the point at which the inflowing calcium taken up from the longitudinal sarcoplasmic ret inflection of the force trace after about 100 ms, and we interpret this to be the point at which the inflowing calcium taken up from the longitudinal sarcoplasmic reticulum starts to be released by the release sites of the interpret this to be the point at which the inflowing
calcium taken up from the longitudinal sarcoplasmic
reticulum starts to be released by the release sites of the
SR. The release is ended with the repolarization of the
 calcium taken up from the longitudinal sarcoplasmic
reticulum starts to be released by the release sites of the
SR. The release is ended with the repolarization of the
cell membrane which apparently closes the calcium re-
 reticulum starts to be released by the release sites of the SR. The release is ended with the repolarization of the cell membrane which apparently closes the calcium re-
lease channels of the junctionally associated SR. De SR. The release is ended with the repolarization of the cell membrane which apparently closes the calcium release channels of the junctionally associated SR. Depending on the length of the action potential, the two contrac cell membrane which apparently closes the calcium re-
lease channels of the junctionally associated SR. De-
pending on the length of the action potential, the two
contraction components may be distinctly separated, or
they dease channels of the junctionally associated SR. Depending on the length of the action potential, the two
contraction components may be distinctly separated, of
they may fuse together into a contraction plateau (fig
3). T pending on the length of the action potential, the two
contraction components may be distinctly separated, or
they may fuse together into a contraction plateau (fig.
3). The duration of the action potential, therefore, con contraction components may be distinctly separated, or
they may fuse together into a contraction plateau (fig.
3). The duration of the action potential, therefore, con-
trols the duration of the late contraction peak and
t they may fuse together into a contraction plateau (fig.
3). The duration of the action potential, therefore, con-
trols the duration of the late contraction peak and
thereby the amount of total calcium released. The time
t 3). The duration of the action potential, therefore, controls the duration of the late contraction peak and thereby the amount of total calcium released. The time to peak of the late component is linearly related to the d trols the duration of the late contraction peak and thereby the amount of total calcium released. The time to peak of the late component is linearly related to the duration of the action potential, and this relation is pre thereby the amount of total calcium released. The time
to peak of the late component is linearly related to the
duration of the action potential, and this relation is
preserved in the presence of catecholamines (24, 345) o to peak of the late component is linearly related to the duration of the action potential, and this relation is preserved in the presence of catecholamines (24, 345) or cesium (323). The late component is reduced or even a duration of the action potential, and this relation is
preserved in the presence of catecholamines (24, 345) or
cesium (323). The late component is reduced or even
abolished if the duration of the action potential is de-
c preserved in the presence of catecholamines (24, 345) or cesium (323). The late component is reduced or even abolished if the duration of the action potential is decreased toward physiological values by increasing the freq

PHARMACOLOGICAL REVIEWS

FIG. 3. Two-component contractions. Superimposed action potentials and contraction curves of a guinea pig papillary muscle in the presence of 10 μ mol/liter of norepinephrine. The numbers indicate: 1, rested state contra

C. Cyclic AMP and Phosphodiesterase Inhibitors

^{21.} (345).

³¹ (345).

Cyclic AMP and Phosphodiesterase Inhibitors

1. Cyclic AMP. That the formation of cyclic AMP by

tivation of adenylate cyclase plays a decisive role in 2. Cyclic AMP and Phosphodiesterase Inhibitors

2. Cyclic AMP. That the formation of cyclic AMP by

activation of adenylate cyclase plays a decisive role in

the inotropic effect of catecholamines was deduced early 1. Cyclic AMP. That the formation of cyclic AMP by
activation of adenylate cyclase plays a decisive role in
the inotropic effect of catecholamines was deduced early
from the correlation between the increase in cyclic AMP
 From the correlation between the increase in cyclic AMP by
activation of adenylate cyclase plays a decisive role in
the inotropic effect of catecholamines was deduced early
from the correlation between the increase in cyc 1. Cyclic AMP. That the formation of cyclic AMP by
activation of adenylate cyclase plays a decisive role in
the inotropic effect of catecholamines was deduced early
from the correlation between the increase in cyclic AMP
 the inotropic effect of catecholamines was deduced early
from the correlation between the increase in cyclic AMP
and the inotropic effect (372). Isoproterenol was found
to be 5 to 10 times more potent than epinephrine or
 the motropic enect of catecholamines was deduced early
from the correlation between the increase in cyclic AMP
and the inotropic effect (372). Isoproterenol was found
to be 5 to 10 times more potent than epinephrine or
nor and the inotropic effect (372). Isoproterenol was found
to be 5 to 10 times more potent than epinephrine or
norepinephrine in stimulating the formation of cyclic
AMP by preparations from dog ventricle, whereas di-
chloroi to be 5 to 10 times more potent than epinephrine correpinephrine in stimulating the formation of cycli
AMP by preparations from dog ventricle, whereas dehoroisoproterenol (DCI) behaved as an antagonis
which indicates the more pinepin in summating the formation of cyclic

AMP by preparations from dog ventricle, whereas di-

chloroisoproterenol (DCI) behaved as an antagonist

which indicates the involvement of β -adrenoceptor stim-

ulati evident that the activation of glycogen phosphorylase by
cyclic AMP is not responsible for the inotropic effect
(250, 224) Protein phosphorylation was found to be of special interest. 8-(4-Chlorophenyl)thio-cyclic AMP
(250 ulation. It was also observed that the formation of cyclic AMP was reduced by acetylcholine and carbachol (372).
From kinetic studies in the isolated heart it soon became evident that the activation of glycogen phosphoryla AMP was reduced by acetylcholine and carbachol (372). From kinetic studies in the isolated heart it soon became
evident that the activation of glycogen phosphorylase by
cyclic AMP is not responsible for the inotropic effe From kinetic studies in the isolated heart it soon became
evident that the activation of glycogen phosphorylase by
cyclic AMP-is not responsible for the inotropic effect
(259, 334). Protein phosphorylation was found to be evident that the activation of glycogen phosphorylase by
cyclic AMP is not responsible for the inotropic effect
(259, 334). Protein phosphorylation was found to be
catalyzed by cyclic AMP-dependent protein kinase (402)
in cyclic AMP is not responsible for the inotropic effect (259, 334). Protein phosphorylation was found to be catalyzed by cyclic AMP-dependent protein kinase (402) is in membrane particles not only from the sarcoplasmic par (259, 334). Protein phosphorylation was found to catalyzed by cyclic AMP-dependent protein kinase (40 in membrane particles not only from the sarcoplasm reticulum (208) but also from the cell surface (420). T association catalyzed by cyclic AMP-dependent protein kinase (402) is about 18 times as effective on protein kinase as the
in membrane particles not only from the sarcoplasmic
reticulum (208) but also from the cell surface (420). The in membrane particles not only from the sarcoplasmic reticulum (208) but also from the cell surface (420). The association of this phosphorylation with a cyclic AMP-dependent modulation of calcium influx (403) led to the reticulum (208) but also from the cell surface (420). The association of this phosphorylation with a cyclic AMP-
dependent modulation of calcium influx (403) led to the
proposal that a cyclic AMP-dependent protein kinase
p association of this phosphorylation with a cyclic AMP-
dependent modulation of calcium influx (403) led to the
proposal that a cyclic AMP-dependent protein kinase
phosphorylates a sarcolemmal calcium channel protein,
th dependent modulation of calcium influx (403) led to the
proposal that a cyclic AMP-dependent protein kinase
phosphorylates a sarcolemmal calcium channel protein,
thus producing a conformational change that makes the
cha proposal that a cyclic AMP-dependent protein kinase
phosphorylates a sarcolemmal calcium channel protein,
thus producing a conformational change that makes the
channel available for voltage activation (366, 385).
Changes phosphorylates a sarcolemmal calcium channel protein, methus producing a conformational change that makes the both channel available for voltage activation (366, 385). of Changes in the configuration of the action potenti thus producing a conformational change that makes the both channel available for voltage activation (366, 385). of Changes in the configuration of the action potential, I_{Ca} , as and contraction produced by injection of channel available for voltage activation $(366, 385)$.
Changes in the configuration of the action potential, I_{Cs} , and contraction produced by injection of cyclic AMP and subunits of cyclic AMP-dependent protein kinase Changes in the configuration of the action potential, I_{Ca} , as been and contraction produced by injection of cyclic AMP and hydro subunits of cyclic AMP-dependent protein kinase into group cardiac myocytes support th and contraction produced by injection of cyclic AMP and
subunits of cyclic AMP-dependent protein kinase into
cardiac myocytes support the hypothesis that phospho-
rylation of a protein within, or close to, the calcium
chan subunits of cyclic AMP-dependent protein kinase into ground cardiac myocytes support the hypothesis that phospho-
rylation of a protein within, or close to, the calcium low
channel by cyclic AMP-dependent protein kinase i cardiac inyocytes support the hypothesis that phosphorylation of a protein within, or close to, the calcium channel by cyclic AMP-dependent protein kinase is indeed the mechanism of calcium channel modulation by β -adre channel by cyclic AMP-dependent protein kinase is in-
deed the mechanism of calcium channel modulation by
 β -adrenoceptor stimulation (298, 62, 193). An elegant cell
proof of the key role of cyclic AMP formation in incr deed the mechanism of calcium channel modulation by α β -adrenoceptor stimulation (298, 62, 193). An elegant corroof of the key role of cyclic AMP formation in increasing I_{Ca} was provided by photochemically produc β -adrenoceptor stimulation (298, 62, 193). An elegar proof of the key role of cyclic AMP formation in increasing I_{C_a} was provided by photochemically producing a intracellular concentration jump of cyclic AMP. The w proof of the key role of cyclic AMP formation in increas-
ing L_{Ca} was provided by photochemically producing an within the cell (219, 220).
intracellular concentration jump of cyclic AMP. This 3. Phosphodiesterase inhibi

CALCIUM MOBILIZATION AND CARDIAC INOTROPIC MECHANISMS 195

yield cyclic AMP upon irradiation (332). Concentration jumps of cyclic AMP, following single brief light flashes, ROIAC INOTROPIC MECHANISMS 195

yield cyclic AMP upon irradiation (332). Concentration

jumps of cyclic AMP, following single brief light flashes,

increased the amplitude and the duration of the action EXECUTE INCREDUCE MECHANISMS

increased the amplitude and the duration of the action

pioneers of cyclic AMP, following single brief light flashes,

increased the amplitude and the duration of the action

potentials, incr yield cyclic AMP upon irradiation (332). Concentration
jumps of cyclic AMP, following single brief light flashes,
increased the amplitude and the duration of the action
potentials, increased I_{Ca} , and simultaneously—in f yield cyclic AMP upon irradiation (332). Concentration
jumps of cyclic AMP, following single brief light flashes,
increased the amplitude and the duration of the action
potentials, increased I_{Cs} , and simultaneously—in (332). potentials, increased I_{Ca} , and simultaneously—in frog
heart trabeculae—increased the force of contraction
(332).
Cyclic AMP also facilitates calcium uptake into the
SR (350) and calcium extrusion through the sarcolemma heart trabeculae-increased the force of contraction

FIG. 3. Two-component contractions. Superimposed action poten-
tials and contraction curves of a guinea pig papillary muscle in the
presence of 10 μ mol/liter of norepinephrine. The *numbers* indicate: 1,
rested state c heart trabeculae—increased the force of contraction (332).

Cyclic AMP also facilitates calcium uptake into the

SR (350) and calcium extrusion through the sarcolemmal

calcium pump (see section VI A), thereby accelerating (332). Cyclic AMP also facilitates calcium uptake into the SR (350) and calcium extrusion through the sarcolemmal calcium pump (see section VI A), thereby accelerating the relaxation of heart muscle. Several findings indi Cyclic AMP also facilitates calcium uptake into the SR (350) and calcium extrusion through the sarcolemmal calcium pump (see section VI A), thereby accelerating the relaxation of heart muscle. Several findings indicate th SR (350) and calcium extrusion through the sarcolemmal
calcium pump (see section VI A), thereby accelerating
the relaxation of heart muscle. Several findings indicate
that the modulation of the SR calcium pump parallels
p calcium pump (see section VI A), thereby accelerating
the relaxation of heart muscle. Several findings indicate
that the modulation of the SR calcium pump parallels
phosphorylation and dephosphorylation of a M_r 22,000
p the relaxation of heart muscle. Several maings matcate
that the modulation of the SR calcium pump parallels
phosphorylation and dephosphorylation of a M_r 22,000
polymeric membrane protein, phospholamban (378). The
phosp phosphorylation and dephosphorylation of a M_r 22,000
polymeric membrane protein, phospholamban (378). The
phosphorylation of phospholamban is catalyzed by cyclic
AMP-dependent protein kinase (208). Recent results
sugges polymeric membrane protein, phospholamban (378). The
phosphorylation of phospholamban is catalyzed by cyclic
AMP-dependent protein kinase (208). Recent results
suggest that, in normal cardiac SR, phospholamban in
the depho AMP-dependent protein kinase (208). Recent results AMP-dependent protein kinase (208) . Recausses that, in normal cardiac SR, phospher the dephosphorylated state acts as a supprecalcium pump and that phosphorylation of phanes serves to reverse the suppression (182) .
2. ggest that, in normal cardiac SR, phospholamban in
 2. dephosphorylated state acts as a suppressor of the

lcium pump and that phosphorylation of phospholam-
 2. Cyclic AMP derivatives. Cyclic AMP applied to the
 2. C calcium pump and that phosphorylation of phospholam-

which indicates the involvement of β -adrenoceptor stim-
ulation. It was also observed that the formation of cyclic β -aximal cyclic AMP (dbcAMP; 226, 354, 328). The half-maximal
AMP was reduced by acetylcholine and c calcium pump and that phosphorylation of phospholam-
ban serves to reverse the suppression (182) .
2. Cyclic AMP derivatives. Cyclic AMP applied to the
extracellular fluid is unable to produce a positive ino-
tropic effe ban serves to reverse the suppression (182) .

2. Cyclic AMP derivatives. Cyclic AMP applied to the

extracellular fluid is unable to produce a positive ino-

tropic effect (313) because it is destroyed intracellularly 2. Cyclic AMP derivatives. Cyclic AMP applied to the extracellular fluid is unable to produce a positive inotropic effect (313) because it is destroyed intracellularly by a phosphodiesterase at a rate much faster than its extracellular fluid is unable to produce a positive ino-
tropic effect (313) because it is destroyed intracellularly
by a phosphodiesterase at a rate much faster than its
rate of entry (334). However, several derivatives o rate of entry (334). However, several derivatives of cyclic AMP which are resistant to enzymatic degradation have been found to elicit catecholamine-like positive inotropic effects when applied extracellularly. The first a by a phosphodiesterase at a rate much faster than its
rate of entry (334). However, several derivatives of cyclic
AMP which are resistant to enzymatic degradation have
been found to elicit catecholamine-like positive inot rate of entry (334). However, several derivatives of cyclic AMP which are resistant to enzymatic degradation have been found to elicit catecholamine-like positive inotropic effects when applied extracellularly. The first AMP which are resistant to enzymatic degradation have
been found to elicit catecholamine-like positive inotropi
effects when applied extracellularly. The first and mos
widely used was the $N^6-2'-O$ -dibutyryl derivative c
 been found to elicit catecholamine-like positive inotropic
effects when applied extracellularly. The first and most
widely used was the N^2 -2'-O-dibutyryl derivative of
cyclic AMP (dbcAMP; 226, 354, 328). The half-maxim effects when applied extracellularly. The first and most
widely used was the N^6 -2'-O-dibutyryl derivative of
cyclic AMP (dbcAMP; 226, 354, 328). The half-maximal
effective concentration is about 1 mmol/liter of dbcAMP. widely used was the N^6 -2'-O-dibutyryl derivative of cyclic AMP (dbcAMP; 226, 354, 328). The half-maximal effective concentration is about 1 mmol/liter of dbcAMP.
The same potency was observed with the 8-substituted cyc clic AMP (dbcAMP; 226, 354, 328). The half-maximal
fective concentration is about 1 mmol/liter of dbcAMP.
he same potency was observed with the 8-substituted
clic AMP derivatives 8-thio-benzyl-cyclic AMP (112).
A few of th

effective concentration is about 1 mmol/liter of dbcAMP.
The same potency was observed with the 8-substituted
cyclic AMP derivatives 8-thio-benzyl-cyclic AMP (112).
A few of the 8-substituted cyclic AMP derivatives are
of The same potency was observed with the 8-substituted
cyclic AMP derivatives 8-thio-benzyl-cyclic AMP (112).
A few of the 8-substituted cyclic AMP derivatives are
of special interest. 8-(4-Chlorophenyl)thio-cyclic AMP
is ab cyclic AMP derivatives 8-thio-benzyl-cyclic AMP (112).
A few of the 8-substituted cyclic AMP derivatives are
of special interest. 8-(4-Chlorophenyl)thio-cyclic AMP
is about 18 times as effective on protein kinase as the
pa A few of the 8-substituted cyclic AMP derivatives are
of special interest. 8-(4-Chlorophenyl)thio-cyclic AMP
is about 18 times as effective on protein kinase as the
parent cyclic AMP (266). On isolated guinea pig papillary of special interest. 8-(4-Chlorophenyl)thio-cyclic AMI
is about 18 times as effective on protein kinase as th
parent cyclic AMP (266). On isolated guinea pig papillar
muscles 8-(4-chlorophenyl)thio-cyclic AMP was foun
to is about 18 times as effective on protein kinase as the parent cyclic AMP (266). On isolated guinea pig papillary muscles 8-(4-chlorophenyl)thio-cyclic AMP was found to be about 25 times as potent as dbcAMP with a half-ma parent cyclic AMP (266). On isolated guinea pig papillary
muscles 8-(4-chlorophenyl)thio-cyclic AMP was found
to be about 25 times as potent as dbcAMP with a half-
maximally effective concentration, log EC₅₀, of -4.4,
f muscles 8-(4-chlorophenyl)thio-cyclic AMP was found
to be about 25 times as potent as dbcAMP with a half-
maximally effective concentration, log EC₅₀, of -4.4,
followed by the 8-tertiary butyl-thio-cyclic AMP with a
mea to be about 25 times as potent as dbcAMP with a half-
maximally effective concentration, log EC_{50} , of -4.4 ,
followed by the 8-tertiary butyl-thio-cyclic AMP with a
mean log EC_{50} of -4.0 (220). The inotropic pote followed by the 8-tertiary butyl-thio-cyclic AMP with a mean log EC_{50} of -4.0 (220). The inotropic potency of both compounds was further increased to log EC_{50} values of -5.66 and -5.38 , respectively, when they followed by the 8-tertiary butyl-thio-cyclic AMP with a mean log EC_{50} of -4.0 (220). The inotropic potency of both compounds was further increased to log EC_{50} values of -5.66 and -5.38 , respectively, when they mean log EC₅₀ of -4.0 (220). The inotropic potency of
both compounds was further increased to log EC₅₀ values
of -5.66 and -5.38 , respectively, when they were applied
as benzyl esters (220). Neutralization of th hydroxyl residue of 8-substituted cyclic AMP by a benzyl
group yielded lipophilic cyclic AMP benzyl esters which
produced their positive inotropic effect at 20 to 100 times of -5.66 and -5.38 , respectively, when they were applied
as benzyl esters (220). Neutralization of the phosphate
hydroxyl residue of 8-substituted cyclic AMP by a benzyl
group yielded lipophilic cyclic AMP benzyl este as benzyl esters (220). Neutralization of the phosphate
hydroxyl residue of 8-substituted cyclic AMP by a benzyl
group yielded lipophilic cyclic AMP benzyl esters which
produced their positive inotropic effect at 20 to 100 hydroxyl residue of 8-substituted cyclic AMP by a benzyl
group yielded lipophilic cyclic AMP benzyl esters which
produced their positive inotropic effect at 20 to 100 times
lower concentrations than the respective cyclic A group yielded lipophilic cyclic AMP benzyl esters which
produced their positive inotropic effect at 20 to 100 times
lower concentrations than the respective cyclic AMP
salts. The lipophilic benzyl esters of cyclic AMP can produced their positive inotropic effect at 20 to 100 times
lower concentrations than the respective cyclic AMP
salts. The lipophilic benzyl esters of cyclic AMP can be
considered as transport forms for cyclic AMP across t lower concentrations than the respective cyclic AMP salts. The lipophilic benzyl esters of cyclic AMP can be considered as transport forms for cyclic AMP across the cell membrane, which gain their biological activity throu salts. The lipophilic benzyl
considered as transport form
cell membrane, which ga
through cyclic AMP release
within the cell (219, 220).
3. Phosphodiesterase in maidered as transport forms for cyclic AMP across the
 3. Phosphodiesterase *inhibitors.* Substances which
 3. Phosphodiesterase inhibitors. Substances which

imulate adenylate cyclase should be potentiated in their cell membrane, which gain their biological activity
through cyclic AMP released by spontaneous hydrolysis
within the cell (219, 220).
3. Phosphodiesterase inhibitors. Substances which
stimulate adenylate cyclase should be

through cyclic AMP released by spontaneous hydrolysis
within the cell (219, 220).
3. Phosphodiesterase inhibitors. Substances which
stimulate adenylate cyclase should be potentiated in their
inotropic effects by drugs whic

REITER
the phosphodiesterase that converts cyclic 3',5'-AMP to curre
the inactive adenosine 5'-phosphate. Methylxanthines prev R
the phosphodiesterase that converts cyclic 3',5'-AMP t
the inactive adenosine 5'-phosphate. Methylxanthine
are competitive inhibitors of this phosphodiesterase (64) REIT
the phosphodiesterase that converts cyclic 3',5'-AMP to
the inactive adenosine 5'-phosphate. Methylxanthines
are competitive inhibitors of this phosphodiesterase (64);
and it has been shown that theophylline and, less the phosphodiesterase that converts cyclic 3',5'-AMP the inactive adenosine 5'-phosphate. Methylxanthine are competitive inhibitors of this phosphodiesterase (64 and it has been shown that theophylline and, less effectivel the inactive adenosine 5'-phosphate. Methylxanthines
are competitive inhibitors of this phosphodiesterase (64);
and it has been shown that theophylline and, less effec-
tively, caffeine at concentrations at which they them the inactive adenosine 5'-phosphate. Methylxanthines pare competitive inhibitors of this phosphodiesterase (64) ; and it has been shown that theophylline and, less effectively, caffeine at concentrations at which they th are competitive inhibitors of this phosphodiesterase (64);
and it has been shown that theophylline and, less effec-
tively, caffeine at concentrations at which they them-
selves are inotropically ineffective potentiate the and it has been shown that theophylline and, less effectively, caffeine at concentrations at which they them-
selves are inotropically ineffective potentiate the cardiac minotropic response to norepinephrine (313). In high tively, caffeine at concentrations at which they themselves are inotropically ineffective potentiate the cardiac inotropic response to norepinephrine (313). In higher concentrations, the methylxanthines would be expected t selves are inotropically ineffective potentiate the cardiac
inotropic response to norepinephrine (313). In higher from
concentrations, the methylxanthines would be expected auto
increase cardiac force in a catecholamine-li inotropic response to norepinephrine (313) . In higher from concentrations, the methylxanthines would be expected auto increase cardiac force in a catecholamine-like manner, where if their activity as phosphodiesterase i concentrations, the methylxanthines would be expected
to increase cardiac force in a catecholamine-like manner,
if their activity as phosphodiesterase inhibitors were
sufficiently selective. However, both caffeine (40) to increase cardiac force in a catecholamine-like manne
if their activity as phosphodiesterase inhibitors we
sufficiently selective. However, both caffeine (40) an
theophylline (218) affect the onset and the relaxation
pha sufficiently selective. However, both caffeine (40) and patheophylline (218) affect the onset and the relaxation morphase of the contraction curve in a way distinctly different from that characteristic for catecholamines. theophylline (218) affect the onset and the relaxat
phase of the contraction curve in a way distinctly dif
ent from that characteristic for catecholamines. T
points to additional effects besides the inhibition of
phosphodi phase of the contraction curve in a way distinctly differ-

ent from that characteristic for catecholamines. This

co

points to additional effects besides the inhibition of the

co

phosphodiesterase (see section IV E). S ent from that characteristic for catecholamines. This
points to additional effects besides the inhibition of the
phosphodiesterase (see section IV E). So far, 1-methyl-
3-isobutylxanthine (IBMX), which is about 15 times as points to additional effects besides the inhibition of the

phosphodiesterase (see section IV E). So far, 1-methyl-

3-isobutylxanthine (IBMX), which is about 15 times as

SF

potent as theophylline as a phosphodiesterase phosphodiesterase (see section IV E). So far, 1-methyl-
3-isobutylxanthine (IBMX), which is about 15 times as SI
potent as theophylline as a phosphodiesterase inhibitor
(21), is the only xanthine derivative that has been 3-isobutylxanthine (IBMX), which is about 15 times a
potent as theophylline as a phosphodiesterase inhibito
(21), is the only xanthine derivative that has been found
to mimic the effects of isoproterenol in the extent of i potent as theophylline as a phosphodiesterase inhibito (21), is the only xanthine derivative that has been found to mimic the effects of isoproterenol in the extent of iteration of the contraction IBMX seems to be devoid o

to mimic the effects of isoproterenol in the extent of its
inotropic effect and the abbreviation of the contraction.
IBMX seems to be devoid of other effects (218, 227).
In recent years several new agents including bipyrid motropic enect and the abbreviation of the contraction.

IBMX seems to be devoid of other effects (218, 227).

In recent years several new agents including bipyridine

and pyridazinone derivatives have been developed that
 In recent years several new agents including bipyridin
and pyridazinone derivatives have been developed tha
possess phosphodiesterase-inhibiting activity and pro
duce positive inotropic effects in the heart (for review
see and pyridazinone derivatives have been developed that possess phosphodiesterase-inhibiting activity and produce positive inotropic effects in the heart (for review, see ref. 122). These agents also apparently have addition possess phosphodiesterase-inhibiting activity and pro-
duce positive inotropic effects in the heart (for review,
see ref. 122). These agents also apparently have addi-
dional effects which might influence their therapeutic duce positive inotropic effects in the heart (for review, see ref. 122). These agents also apparently have additional effects which might influence their therapeutic usefulness (360, 410, 343, 335, 113). It has been found see Fel. 122). These agents also apparently have additional effects which might influence their therapeutic usefulness (360, 410, 343, 335, 113). It has been found that functional subclasses of the cyclic AMP-specific phos usefulness (360, 410, 343, 335, 113). It has been found belt that functional subclasses of the cyclic AMP-specific allembrosphodiesterase (PDE III) exist in ventricular muscle; ran these may be either membrane bound or so that functional subclasses of the cyclic AMP-specific
phosphodiesterase (PDE III) exist in ventricular muscle;
these may be either membrane bound or soluble (409).
Differences in their intracellular localization might be
r phosphodiesterase (PDE III) exist in ventricular musc
these may be either membrane bound or soluble (40
Differences in their intracellular localization might
responsible for species differences that exist in the ca
diotoni tors. **ISONATE:** Interpretes that exist in
 IV. Calcium Release Mechanisms
 IV. Calcium Release Mechanisms
 IC. Dersus Current-dependent Calcium diotonic responses to various phosphodiesterase inhibi-
 A. Voltage- versus Current-dependent Calcium Release

In voltage-clamp experiments the relation between

In voltage-clamp experiments the relation between

IV. Calcium Release Mechanisms
Voltage-versus Current-dependent Calcium Release
In voltage-clamp experiments the relation between
embrane potential and force development has been IV. Calcium Release Mechanisms

A. Voltage-versus Current-dependent Calcium Release

In voltage-clamp experiments the relation between

membrane potential and force development has been

studied in an effort to determine A. Voltage- versus Current-dependent Calcium Release
In voltage-clamp experiments the relation between
membrane potential and force development has been
studied in an effort to determine whether Ca entering by sign
way of A. Voltage- versus Current-uependent Cultum Release
In voltage-clamp experiments the relation between
membrane potential and force development has been
studied in an effort to determine whether Ca entering by
way of the se In voltage-clamp experiments the relation between
membrane potential and force development has been
studied in an effort to determine whether Ca entering by
way of the second inward current not only replenishes
the intrace membrane potential and force development has bee
studied in an effort to determine whether Ca entering b
way of the second inward current not only replenishe
the intracellular calcium pools but also triggers the re
lease o studied in an effort to determine whether Ca entering by
way of the second inward current not only replenishes SR,
the intracellular calcium pools but also triggers the re-calc
lease of stored calcium. In addition to the m way of the second inward current not only replenishes
the intracellular calcium pools but also triggers the re-
lease of stored calcium. In addition to the methodological wide
difficulties in obtaining homogeneous voltage the intracellular calcium pools but also triggers the re-
lease of stored calcium. In addition to the methodological we
difficulties in obtaining homogeneous voltage control in the
multicellular preparations (190), these e lease of stored calcium. In addition to the methodological widerficulties in obtaining homogeneous voltage control in the multicellular preparations (190), these experiments have in the problem of uncertainty about the ext difficulties in obtaining homogeneous voltage control in
multicellular preparations (190), these experiments have
the problem of uncertainty about the extent of filling of
the calcium release store, which depends upon a va multicellular preparations (190), these experiments have the problem of uncertainty about the extent of filling the calcium release store, which depends upon a varie of factors, including resting membrane potential, procus the problem of uncertainty about the extent of filling of
the calcium release store, which depends upon a variety
of factors, including resting membrane potential, pre-
vious stimulation pattern, outside calcium concentrat the calcium release store, which depends upon a variety is step of factors, including resting membrane potential, pre-
vious stimulation pattern, outside calcium concentration, It as
temperature, clamp duration, and the nu of factors, including resting membrane potential, pre-
vious stimulation pattern, outside calcium concentration, It
temperature, clamp duration, and the number of depo-
alarizations. The role of the SR becomes visible if, vious stimulation pattern, outside calcium concentration, It
temperature, clamp duration, and the number of depo-
larizations. The role of the SR becomes visible if, as in
the records of Beeler and Reuter (23), the develop temperature, clamp duration, and the number of depo-
larizations. The role of the SR becomes visible if, as in
the records of Beeler and Reuter (23), the developed Tl
force increases with the number of similar voltage clam

sufficiently selective. However, both caffeine (40) and parallels between I_{C_a} and force of contraction indicate a theophylline (218) affect the onset and the relaxation modulation by I_{C_a} of the release itself or o REITER
to current itself seems to be influenced by the number of
les previous contractions or pattern of stimulation. Simurda ER
current itself seems to be influenced by the number of
previous contractions or pattern of stimulation. Simurda
and coworkers (352) observed a decrease of I_{Ca} under ER
current itself seems to be influenced by the number of
previous contractions or pattern of stimulation. Simurda
and coworkers (352) observed a decrease of I_{Ca} under
conditions of a mechanical staircase, reflecting t current itself seems to be influenced by the number of
previous contractions or pattern of stimulation. Simurda
and coworkers (352) observed a decrease of I_{Ca} under
conditions of a mechanical staircase, reflecting the current itself seems to be influenced by the number of
previous contractions or pattern of stimulation. Simurda
and coworkers (352) observed a decrease of I_{Ca} under
conditions of a mechanical staircase, reflecting the previous contractions or pattern of stimulation. Simurda
and coworkers (352) observed a decrease of I_{Ca} under
conditions of a mechanical staircase, reflecting the in-
creasing amount of calcium released from the SR and and coworkers (352) observed a decrease of L_{ca} under
conditions of a mechanical staircase, reflecting the in-
creasing amount of calcium released from the SR and its
modulating effect on L_{Ca} . Therefore, it is diffic conditions of a mechanical staircase, reflecting the increasing amount of calcium released from the SR and its modulating effect on I_{Ca} . Therefore, it is difficult to judge from the voltage-force relationships publishe modulating effect on I_{Ca} . Therefore, it is difficult to judge
from the voltage-force relationships published by various
authors working under different experimental conditions
whether the observed effects are directly modulating effect on I_{Ca} . Therefore, it is difficult to judge
from the voltage-force relationships published by various
authors working under different experimental conditions
whether the observed effects are directly from the voltage-force relationships published by various
authors working under different experimental conditions
whether the observed effects are directly or indirectly
voltage related. In other words, it is uncertain wh authors working under different experimental conditions
whether the observed effects are directly or indirectly
voltage related. In other words, it is uncertain whether
parallels between I_{Ca} and force of contraction in whether the observed effects are directly or indirectly
voltage related. In other words, it is uncertain whether
parallels between I_{C_a} and force of contraction indicate a
modulation by I_{C_a} of the release itself or voltage related. In other words, it is uncertain whether
parallels between I_{C_a} and force of contraction indicate a
modulation by I_{C_a} of the release itself or of the filling of
the release stores. Since in the mamm parallels between I_{Ca} and force of contraction indicate a modulation by I_{Ca} of the release itself or of the filling of the release stores. Since in the mammalian heart, in contrast to the frog heart, there appears n modulation by I_{Ca} of the release itself or of the filling of
the release stores. Since in the mammalian heart, in
contrast to the frog heart, there appears not to be direct
coupling between inflowing calcium and contra the release stores. Since
contrast to the frog heart,
coupling between inflowin
results are bound to depe:
SR is filled with calcium.
In the steady state, wh ntrast to the frog heart, there appears not to be direct
upling between inflowing calcium and contraction, the
sults are bound to depend on the extent to which the
 λ is filled with calcium.
In the steady state, where o

(21), is the only xanthine derivative that has been found constant filling of the SR proportional to the strength of
to mimic the effects of isoproterenol in the extent of its
including I_{Ca} at the chosen clamp potentia coupling between inflowing calcium and contraction, the results are bound to depend on the extent to which the SR is filled with calcium.

In the steady state, where one might expect a rather constant filling of the SR pr results are bound to depend on the extent to which the
SR is filled with calcium.
In the steady state, where one might expect a rather
constant filling of the SR proportional to the strength of
 I_{Ca} at the chosen clamp SR is filled with calcium.
In the steady state, where one might expect a rather
constant filling of the SR proportional to the strength of
 I_{C_a} at the chosen clamp potential, almost all authors have
found a parallelism In the steady state, where one might expect a rather constant filling of the SR proportional to the strength of I_{Ca} at the chosen clamp potential, almost all authors have found a parallelism between I_{Ca} and force of constant filling of the SR proportional to the strength of I_{C_a} at the chosen clamp potential, almost all authors have found a parallelism between I_{C_a} and force of contraction at depolarizations up to zero potentia I_{Ca} at the chosen clamp potential, almost all authors have
found a parallelism between I_{Ca} and force of contraction
at depolarizations up to zero potential. With further
depolarizations to inside positive values, th found a parallelism between I_{Ca} and force of contraction
at depolarizations up to zero potential. With further
depolarizations to inside positive values, the force of
contraction usually remained more or less constant, at depolarizations up to zero potential. With further depolarizations to inside positive values, the force of contraction usually remained more or less constant, not following the decline of I_{C_a} and indicating a relea depolarizations to inside positive values, the force of contraction usually remained more or less constant, not following the decline of I_{Ca} and indicating a release of stored calcium independent of I_{Ca} (134, 23, 29 contraction usually remained more or less constant, not
following the decline of I_{C_a} and indicating a release of
stored calcium independent of I_{C_a} (134, 23, 294, 383, 186).
A few papers on multicellular preparatio stored calcium independent of I_{Ca} (134, 23, 294, 383, 186).
A few papers on multicellular preparations (271, 238, 260) and one on single heart cells (245) have presented bell-shaped voltage-force curves which run rough stored calcium independent of I_{Ca} (134, 23, 294, 383, 186).
A few papers on multicellular preparations (271, 238, 260) and one on single heart cells (245) have presented
bell-shaped voltage-force curves which run rough A few papers on multicellular preparations (271, 238, 260) and one on single heart cells (245) have presented bell-shaped voltage-force curves which run roughly parallel to the voltage- I_{Ca} curves in the positive voltag 260) and one on single heart cells (245) have presented
bell-shaped voltage-force curves which run roughly par-
allel to the voltage- I_{Ca} curves in the positive voltage
range. As a possible explanation of the divergence bell-shaped voltage-force curves which run roughly parallel to the voltage-I_{Ca} curves in the positive voltage range. As a possible explanation of the divergence of their results, Morad and Goldman (271) pointed to the lo allel to the voltage- I_{C_a} curves in the positive voltage
range. As a possible explanation of the divergence of
their results, Morad and Goldman (271) pointed to the
lower experimental temperature in contrast to that us range. As a possible explanation of the divergence of their results, Morad and Goldman (271) pointed to the lower experimental temperature in contrast to that used by other authors $(24-25^{\circ}C, \text{ refs. } 271 \text{ and } 260; \text{ "room$ their results, Morad and Goldman (271) pointed to the lower experimental temperature in contrast to that used
by other authors (24–25°C, refs. 271 and 260; "room
temperature," refs. 238 and 245 versus 35–37°C, the
others). by other authors (24–25°C, refs. 271 and 260; "room
temperature," refs. 238 and 245 versus 35–37°C, the
others). This could indicate that the storage capability
of the release sites of the SR in the mammalian heart is
redu by other authors (24–25°C, refs. 271 and 260; "room
temperature," refs. 238 and 245 versus 35–37°C, the
others). This could indicate that the storage capability
of the release sites of the SR in the mammalian heart is
redu temperature," refs. 238 and 245 versus 35–37°C, the others). This could indicate that the storage capability of the release sites of the SR in the mammalian heart is reduced at low temperatures. Experimental evidence for s others). This could indicate that the storage capability
of the release sites of the SR in the mammalian heart is
reduced at low temperatures. Experimental evidence for
such an assumption is provided by the rapid cooling
 of the release sites of the SR in the mammalian heart is
reduced at low temperatures. Experimental evidence for
such an assumption is provided by the rapid cooling
contractures which are activated without depolarization
b reduced at low temperatures. Experimental evidence for
such an assumption is provided by the rapid cooling
contractures which are activated without depolarization
by an abrupt Ca²⁺ leak from the SR (228, 58). If cooling
 contractures which are activated without depolarization
by an abrupt Ca^{2+} leak from the SR (228, 58). If cooling
significantly slows the active calcium uptake into the
SR, an uncompensated calcium leak will reduce the
 by an abrupt Ca^{2+} leak from the SR (228, 58). If cooling significantly slows the active calcium uptake into the SR, an uncompensated calcium leak will reduce the calcium content of the release compartments. Consistent significantly slows the active calcium uptake into the SR, an uncompensated calcium leak will reduce the calcium content of the release compartments. Consistent with the release sites being empty at low temperatures is the SR, an uncompensated calcium leak will reduce the calcium content of the release compartments. Consistent with the release sites being empty at low temperatures is the finding of Kitazawa (210) that, at 25° C, the cha calcium content of the release compartments. Consistent
with the release sites being empty at low temperatures is
the finding of Kitazawa (210) that, at 25°C, the change
in force of contraction of mammalian ventricular mu which the felease sites being empty at low demperatures is
the finding of Kitazawa (210) that, at 25°C, the change
in force of contraction of mammalian ventricular muscle
induced by a change in the outside calcium concent the finding of Kitazawa (210) that, at 25°C, the change
in force of contraction of mammalian ventricular muscle
induced by a change in the outside calcium concentration
is synchronous with the change in $[Ca^{2+}]$ at the ce in force of contraction of mammalian ventricular muscle
induced by a change in the outside calcium concentration
is synchronous with the change in $[Ca^{2+}]$ at the cell
surface. (see also ref. 6 for comparable results at 2 induced by a change in the outside calcium concentrat
is synchronous with the change in $[Ca^{2+}]$ at the surface. (see also ref. 6 for comparable results at 21[°]
It appears, therefore, that at 25[°]C the contractions
acti is synchronous with the change in $[Ca^{2+}]$ at the celevation surface. (see also ref. 6 for comparable results at 21° C) It appears, therefore, that at 25° C the contractions are activated by calcium entering the c surface. (see also ref. 6 for comparable results at 21° C).
It appears, therefore, that at 25° C the contractions are
activated by calcium entering the cell during depolari-
zation via I_{Ca} and presumably consis It appears, therefore, that at 25°C the contractions are
activated by calcium entering the cell during depolari-
zation via I_{Ca} and presumably consist of late components.
The bell-shaped curves in the aboveactivated by calcium entering the cell during depolarization via I_{C_a} and presumably consist of late components.
The bell-shaped curves in the above-mentioned papers would then correspond to those obtained in single ce

PHARMACOLOGICAL REVIEW!

CALCIUM MOBILIZATION AN
SR are empty, and the calcium that activates contraction is "directly" derived from I_{Ca} and leads to let CALCIUM MOBILIZATION AND SR are empty, and the calcium that activates contraction is "directly" derived from I_{Ca} and leads to late-appearing contractions (see below, and ref. 186). In line CALCIUM MOBILIZATION AND CARDI
SR are empty, and the calcium that activates contraction
is "directly" derived from I_{Ca} and leads to late-
compearing contractions (see below, and ref. 186). In line
with this reasoning i SR are empty, and the calcium that activates contraction is "directly" derived from I_{Ca} and leads to late-appearing contractions (see below, and ref. 186). In line with this reasoning is the bell-shaped voltage depende SR are empty, and the calcium that activates contraction is "directly" derived from I_{Ca} and leads to late appearing contractions (see below, and ref. 186). In line with this reasoning is the bell-shaped voltage depende appearing contractions (see below, and ref. 186). In line
with this reasoning is the bell-shaped voltage dependence
of $[Ca^{2+}]_i$ transients observed in single guinea pig ven-
tricular cells at 37°C by means of the fluore appearing contractions (see below, and ref. 186). In line contraction components presumably because, as a result
with this reasoning is the bell-shaped voltage dependence of partial diastolic depolarization of the sarcole with this reasoning is the bell-shaped voltage dependence of \int of $[Ca^{2+}]$; transients observed in single guinea pig ven-
tricular cells at 37°C by means of the fluorescent Ca^{2+} des
indicator fura-2 (16). The cells of $[Ca^{2+}]_i$ transients observed in single guinea pig ven
tricular cells at 37°C by means of the fluorescent Ca^2
indicator fura-2 (16). The cells were voltage clampe
from a holding potential of -40 mV, which is a ver tricular cells at 37°C by means of the fluorescent Ca^{2+} indicator fura-2 (16). The cells were voltage clamped from a holding potential of -40 mV, which is a very unfavorable condition for Ca storage in SR release com indicator fura-2 (16). The cells were voltage clamped
from a holding potential of -40 mV, which is a very
unfavorable condition for Ca storage in SR release com-
partments in spite of "conditioning" clamp pulses (186,
3 from a holding potential of -40 mV, which is a very be unfavorable condition for Ca storage in SR release compartments in spite of "conditioning" clamp pulses (186, aft 399; see section IV C). Therefore, it is quite pos unfavorable condition for Ca storage
partments in spite of "conditioning"
399; see section IV C). Therefore, it
the transients of fluorescence were
voltage-dependent calcium influx.
The filling state of the SR is The filling state of "conditioning" clamp pulses (186, after the SR is quite possible that cover the state of fluorescence were caused directly by the politage-dependent calcium influx. The filling state of the SR is also

399; see section IV C). Therefore, it is quite possible that
the transients of fluorescence were caused directly by the
voltage-dependent calcium influx.
The filling state of the SR is also pertinent to the
question of wh the transients of fluorescence were caused directly by the voltage-dependent calcium influx.
The filling state of the SR is also pertinent to the question of whether calcium release can be triggered a potentials negative voltage-dependent calcium influx. at

The filling state of the SR is also pertinent to the

question of whether calcium release can be triggered at

potentials negative to the I_{Ca} threshold. Beeler and Reu-

ter (in th The filling state of the SR is also pertinent to the from question of whether calcium release can be triggered at 20 potentials negative to the L_{c_a} threshold. Beeler and Reuter (in their fig. 4, ref. 23) observed that question of whether calcium release can be triggered at 20 m/s
potentials negative to the I_{Ca} threshold. Beeler and Reu-
ter (in their fig. 4, ref. 23) observed that appreciable force ulum,
of contraction was activ potentials negative to the I_{C_a} threshold. Beeler and Reuter (in their fig. 4, ref. 23) observed that appreciable force und of contraction was activated at -54 mV only after the v sixth depolarization to $+19$ mV, i. ter (in their fig. 4, ref. 23) observed that appreciable fo
of contraction was activated at -54 mV only after \cdot
sixth depolarization to $+19$ mV, i.e., only after the
was filled with releasable calcium as a result of of contraction was activated at -54 mV only after the sixth depolarization to $+19$ mV, i.e., only after the SF was filled with releasable calcium as a result of repeated previous activation of calcium inward current. A sixth depolarization to $+19$ mV, i.e., only after the SR lower was filled with releasable calcium as a result of repeated the previous activation of calcium inward current. Accordingly, Gibbons and Fozzard (141) found th was filled with releasable calcium as a result of repeated
previous activation of calcium inward current. Accord-
ingly, Gibbons and Fozzard (141) found that the con-
straction threshold was altered by a shift of the stead previous activation of calcium inward current. Accordingly, Gibbons and Fozzard (141) found that the contraction threshold was altered by a shift of the steady shift of the steady to about 20 mV more positive values after ingly, Gibbons and Fozzard (141) found that the contraction threshold was altered by a shift of the steady membrane voltage. The voltage-force relation was shifted to about 20 mV more positive values after a shift of the traction threshold was altered by a shift of the steady
membrane voltage. The voltage-force relation was shifted
to about 20 mV more positive values after a shift of the
holding potential from -78 to -61 mV. This indi inembrane voltage. I he voltage-force relation was sinted
to about 20 mV more positive values after a shift of the
holding potential from -78 to -61 mV. This indicates
that (a) the amount of calcium available in the s holding potential from -78 to -61 mV. This indicates that (a) the amount of calcium available in the storage site for release (the degree of recovery or repriming) channel depends on the "diastolic" membrane potential that (*a*) the amount of calcium available in the storage
site for release (the degree of recovery or repriming)
depends on the "diastolic" membrane potential (see also
section IV C), and (*b*) the release of activator ca site for release (the degree of recovery or repriming)
depends on the "diastolic" membrane potential (see also
section IV C), and (b) the release of activator calcium
from a filled store upon depolarization from a membran depends on the "diastolic" membrane potential (see also
section IV C), and (b) the release of activator calcium
from a filled store upon depolarization from a membrane
potential of about -80 mV is not triggered by I_{Ca} section IV C), and (b) the release of activator calcium
from a filled store upon depolarization from a membrane
potential of about -80 mV is not triggered by I_{Ca} flowing
through L-type channels, since strong contractio from a filled store upon depolarization from a membrane
potential of about -80 mV is not triggered by I_{C_a} flowing
through L-type channels, since strong contractions are
elicited at potentials as low as -60 mV, far bel potential of about -60 in v is not triggered by 1_{Ca} nowing
through L-type channels, since strong contractions are
elicited at potentials as low as -60 mV, far below the
threshold for this current (see also refs elicited at potentials as low as -60 mV, far below the
threshold for this current (see also refs. 384, 353, and
186). Simurda and coworkers (353) observed a slow in-
ward current associated with strong contractions at v threshold for this current (see also refs. 384, 353, i 186). Simurda and coworkers (353) observed a slow ward current associated with strong contractions at vages negative to the threshold of I_{Ca} . The current var in 186). Simurda and coworkers (353) observed a slow in-
ward current associated with strong contractions at volt-
ages negative to the threshold of I_{Ca} . The current varied
in parallel with the strength of contraction, bo ward current associated with strong contractions at volt-
ages negative to the threshold of I_{Ca} . The current varied
in parallel with the strength of contraction, both depend-
ing on the extent to which preceding activi ages negative to the threshold of I_{Ca} . The current var
in parallel with the strength of contraction, both depen
ing on the extent to which preceding activity had fil
the release stores. They related this current $(I_{\rm sic$ in parallel with the strength of contraction, both depending on the extent to which preceding activity had filled value with the release stores. They related this current $(I_{\rm sic})$ to the with calcium discharge from the st ing on the extent to which preceding activity had fil
the release stores. They related this current $(I_{\rm sic})$ to
calcium discharge from the stores. Evidence for a con
bution of a current induced by calcium release from
SR the release stores. They related this current (I_{sic}) to the calcium discharge from the stores. Evidence for a contribution of a current induced by calcium release from the SR to the second inward current in mammalian calcium discharge from the stores. Evention of a current induced by calcium SR to the second inward current in rular cells has also been obtained by $(206;$ see sections IV B 4 and V A). Calcium release cannot be expected bution of a current induced by calcium release from the SR to the second inward current in mammalian ventric-
ular cells has also been obtained by others (254, 98, 125, 206; see sections IV B 4 and V A).
Calcium release ca SR to the second inward current in mammalian ventric-
ular cells has also been obtained by others (254, 98, 125,
206; see sections IV B 4 and V A).
Calcium release cannot be expected under conditions
which favor the empty

ular cells has also been obtained by others (254, 98, 125
206; see sections IV B 4 and V A).
Calcium release cannot be expected under condition
which favor the empty state of release sites. A rationa
method to provide empt 206; see sections IV B 4 and V A).
Calcium release cannot be expected under conditions combined to provide empty state of release sites. A rational by
method to provide empty release compartments in voltions
age-clamp exp Calcium release cannot be expected under conditions
which favor the empty state of release sites. A rational
method to provide empty release compartments in volt-
age-clamp experiments at a temperature of 35° C was
us which favor the empty state of release sites. A rational b method to provide empty release compartments in volt-
age-clamp experiments at a temperature of 35° C was a used by Isenberg et al. (186). They elicited contr method to provide empty release compartments in volt-
age-clamp experiments at a temperature of 35° C was
used by Isenberg et al. (186). They elicited contractions ele
of single myocytes isolated from guinea pig or bo age-clamp experiments at a temperature of 35° C was a used by Isenberg et al. (186). They elicited contractions esting of single myocytes isolated from guinea pig or bovine hypertricles by clamp steps from a holding p used by Isenberg et al. (186). They elicited contractions est of single myocytes isolated from guinea pig or bovine heretricles by clamp steps from a holding potential of -45 mV (solution containing 20 mmol/liter of KCl of single myocytes isolated from guinea pig or bovit ventricles by clamp steps from a holding potential of $-wV$ (solution containing 20 mmol/liter of KCl). The contractions were of slow onset, lagging the start depolariza

SUIAC INOTROPIC MECHANISMS
sented pure late contraction components. Under these
conditions the ventricular cell is unable to produce early conditions the ventricular cell is unable to produce early
conditions the ventricular cell is unable to produce early
contraction components presumably because, as a result contraction components. Under these
sented pure late contraction components. Under these
conditions the ventricular cell is unable to produce early
contraction components presumably because, as a result
of partial diastoli sented pure late contraction components. Under these
conditions the ventricular cell is unable to produce early
contraction components presumably because, as a result
of partial diastolic depolarization of the sarcolemma, sented pure late contraction components. Under these
conditions the ventricular cell is unable to produce early
contraction components presumably because, as a result
of partial diastolic depolarization of the sarcolemma, conditions the ventricular cell is unable to produce early contraction components presumably because, as a result of partial diastolic depolarization of the sarcolemma, the calcium has leaked from the release stores. The contraction components presumably because, as a result
of partial diastolic depolarization of the sarcolemma, the
calcium has leaked from the release stores. The curve
describing the voltage dependence of these contractio of partial diastolic depolarization of the sarcolemma, the calcium has leaked from the release stores. The curve describing the voltage dependence of these contractions is bell shaped and parallel to that of I_{Ca} , presu calcium has leaked from the release stores. The curve
describing the voltage dependence of these contractions
is bell shaped and parallel to that of I_{Ca} , presumably
because it is the calcium carried by I_{Ca} which, af describing the voltage dependence of these contractions
is bell shaped and parallel to that of I_{Ca} , presumably
because it is the calcium carried by I_{Ca} which, after its
uptake into the longitudinal part of the SR, i is bell shaped and parallel to that of I_{Ca} , presumably
because it is the calcium carried by I_{Ca} which, after its
uptake into the longitudinal part of the SR, is released
after some delay into the cytosol. Early (fas because it is the calcium carried by I_{Ca} which, after its uptake into the longitudinal part of the SR, is released after some delay into the cytosol. Early (fast) contraction components were obtained in myocytes when, uptake into the longitudinal part of the SR, is released
after some delay into the cytosol. Early (fast) contraction
components were obtained in myocytes when, from a
potential of -80 mV during the intervals between bea after some delay into the cytosol. Early (fast) contraction
components were obtained in myocytes when, from a
potential of -80 mV during the intervals between beats
at 0.5 or 1.0 Hz, increasing clamp steps were induced
 components were obtained in myocytes when, from a
potential of -80 mV during the intervals between beats
at 0.5 or 1.0 Hz, increasing clamp steps were induced
from an intermediate -45 mV holding potential lasting
 potential of -80 mV during the intervals between beat at 0.5 or 1.0 Hz, increasing clamp steps were induce from an intermediate -45 mV holding potential lastin 20 ms. These contractions, elicited by calcium rele at 0.5 or 1.0 Hz, increasing clamp steps were induced
from an intermediate -45 mV holding potential lasting
 20 ms. These contractions, elicited by calcium release
from presumably filled stores of the sarcoplasmic from an intermediate -45 mV holding potential last 20 ms. These contractions, elicited by calcium rele
from presumably filled stores of the sarcoplasmic ret
ulum, must be regarded as normal contractions wh
voltage depen 20 ms. These contractions, elicited by calcium release
from presumably filled stores of the sarcoplasmic retic-
ulum, must be regarded as normal contractions whose
voltage dependence should be representative for physio-
lo from presumably filled stores of the sarcoplasmic retic-
ulum, must be regarded as normal contractions whose
voltage dependence should be representative for physio-
logical excitation-contraction coupling. The contraction ulum, must be regarded as normal contractions wh
voltage dependence should be representative for phys
logical excitation-contraction coupling. The contract
threshold of these early contractions was obviously m
negative th voltage dependence should be representative for physiological excitation-contraction coupling. The contraction threshold of these early contractions was obviously more negative than -45 mV (extrapolation of the voltagelogical excitation-contraction coupling. The contraction
threshold of these early contractions was obviously more
negative than -45 mV (extrapolation of the voltage-
shortening velocity curve in fig. 4 of ref. 186 to ze threshold of these early contractions was obviously more
negative than -45 mV (extrapolation of the voltage-
shortening velocity curve in fig. 4 of ref. 186 to zero
shortening velocity gives an estimated value of -60 negative than -45 mV (extrapolation of the voltage-
shortening velocity curve in fig. 4 of ref. 186 to zero
shortening velocity gives an estimated value of -60 mV),
and the voltage dependence of these contractions was shortening velocity curve in fig. 4 of ref. 186 to zero
shortening velocity gives an estimated value of -60 mV),
and the voltage dependence of these contractions was
not bell shaped; maximal early contractions were ob-
 shortening velocity gives an estimated value of -60 mV),
and the voltage dependence of these contractions was
not bell shaped; maximal early contractions were ob-
tained at strongly positive potentials $(+100$ mV) where
 and the voltage dependence of these contractions was
not bell shaped; maximal early contractions were ob-
tained at strongly positive potentials $(+100 \text{ mV})$ where
there should be no calcium current through the calcium
ch tained at strongly positive potentials (+100 mV) where ere should be no calcium current through the calcium
annels (20, 289).
Calcium-induced Calcium Release
1. Oscillatory contractions in skinned fibers. Ford and
dolsky (132) and Endo et al. (109) reported independ-

channels (20, 289).

B. Calcium-induced Calcium Release

1. Oscillatory contractions in skinned fibers. Ford

Podolsky (132) and Endo et al. (109) reported indepently that, under certain facilitating conditions, calc B. Calcium-induced Calcium Release

1. Oscillatory contractions in skinned fibers. Ford and

Podolsky (132) and Endo et al. (109) reported independ-

ently that, under certain facilitating conditions, calcium

ions can ac B. Calcium-induced Calcium Release

1. Oscillatory contractions in skinned fibers. Ford and

Podolsky (132) and Endo et al. (109) reported independ-

ently that, under certain facilitating conditions, calcium

ions can ac 1. Oscillatory contractions in skinned fibers. Ford and Podolsky (132) and Endo et al. (109) reported independently that, under certain facilitating conditions, calcium ions can actually induce a release of stored calcium Podolsky (132) and Endo et al. (109) reported independently that, under certain facilitating conditions, calcium
ions can actually induce a release of stored calcium from
the SR of skeletal muscle fibers which have been me ently that, under certain facilitating conditions, calcium
ions can actually induce a release of stored calcium from
the SR of skeletal muscle fibers which have been me-
chanically deprived of the sarcolemma (skinned fiber the SR of skeletal muscle fibers which have been methe SR of skeletal muscle fibers which have been mechanically deprived of the sarcolemma (skinned fibers, Natori, ref. 280). Endo et al. (109) observed spontaneous oscillatory contractions suggesting that calcium release i chanically deprived of the sarcolemma (skinned fibe Natori, ref. 280). Endo et al. (109) observed spontaneo oscillatory contractions suggesting that calcium release is a regenerative process in which Ca itself causes t rel Natori, ref. 280). Endo et al. (109) observed spontaneous oscillatory contractions suggesting that calcium release is a regenerative process in which Ca itself causes the release of Ca from the SR. Essentially the same obs oscillatory contractions suggesting that calcium release
is a regenerative process in which Ca itself causes the
release of Ca from the SR. Essentially the same obser-
vations have been made in mammalian heart muscle cells is a regenerative process in which Ca itself causes the release of Ca from the SR. Essentially the same observations have been made in mammalian heart muscle cells with disrupted or removed sarcolemma but not in those of release of Ca from the SR. Essentially the same obs
vations have been made in mammalian heart muscle c
with disrupted or removed sarcolemma but not in th
of the frog heart $(42-44, 118, 119, 83)$. The cyclic c
tractions w vations have been made in mammalian heart muscle cells
with disrupted or removed sarcolemma but not in those
of the frog heart $(42-44, 118, 119, 83)$. The cyclic con-
trations were inhibited in the presence of high conce with disrupted or removed sarcol
of the frog heart $(42-44, 118, 11)$
tractions were inhibited in the pictrations of a Ca buffer, and the
SR was destroyed by a detergent.
2. Aftercontractions. The inde tractions were inhibited in the presence of high concentrations of a Ca buffer, and they were abolished if the SR was destroyed by a detergent.
2. Aftercontractions. The independence of oscillatory contractions from the st

trations of a Ca buffer, and they were abolished if the
SR was destroyed by a detergent.
2. Aftercontractions. The independence of oscillatory
contractions from the stimulation of the sarcolemma had
been observed earlier i SR was destroyed by a detergent.

2. Aftercontractions. The independence of oscillation

contractions from the stimulation of the sarcolemma h

been observed earlier in intact multicellular preparation

in which damped for 2. Aftercontractions. The independence of oscillatory
contractions from the stimulation of the sarcolemma had
been observed earlier in intact multicellular preparations
in which damped force oscillations (aftercontractions contractions from the stimulation of the sarcolemma had
been observed earlier in intact multicellular preparations
in which damped force oscillations (aftercontractions)
appeared without accompanying action potentials afte been observed earlier in intact multicellular preparations
in which damped force oscillations (aftercontractions)
appeared without accompanying action potentials after
electrically triggered contractions under conditions o in which damped force oscillations (aftercontractions)
appeared without accompanying action potentials a
electrically triggered contractions under conditions
high calcium load (318). These aftercontractions were
garded as appeared without accompanying action potentials after
electrically triggered contractions under conditions of
high calcium load (318). These aftercontractions were
regarded as an example of electromechanical dissocia-
tion electrically triggered contractions under conditions of
high calcium load (318). These aftercontractions were
regarded as an example of electromechanical dissocia-
tion, of decoupling of contraction from excitation of the high calcium load (318). These aftercontractions were regarded as an example of electromechanical dissociation, of decoupling of contraction from excitation of the sarcolemmal membrane, and they were envisaged as being th

198

loaded stores of the SR (318–320, 57). By increasing

diastolic mechanical activity they change myocardial

t RE

198

loaded stores of the SR (318–320, 57). By increasing

diastolic mechanical activity they change myocardial

diastolic compliance (53, 212, 126). While aftercontrac-198
loaded stores of the SR (318–320, 57). By incre
diastolic mechanical activity they change myoca
diastolic compliance (53, 212, 126). While aftercontions are not elicited by action potentials they ma loaded stores of the SR (318–320, 57). By increasing mediastolic mechanical activity they change myocardial tandiastolic compliance (53, 212, 126). While aftercontractories are not elicited by action potentials they may be loaded stores of the SR (318-320, 57). By increasing mechanical oscillation amplitude, it enhances the spon-
diastolic mechanical activity they change myocardial taneous frequency of Ca^{2+} release, but ryanodine sup-
di diastolic compliance $(53, 212, 126)$. While aftercontractions are not elicited by action potentials they may be accompanied, under certain conditions, by oscillations of the membrane potential (oscillatory afterpotential diastolic compliance $(53, 212, 126)$. While aftercontrac-
tions are not elicited by action potentials they may be
accompanied, under certain conditions, by oscillations of rele
the membrane potential (oscillatory afterpo tions are not elicited by action potentials they may be accompanied, under certain conditions, by oscillations of the membrane potential (oscillatory afterpotentials) which are thought to be secondary events caused by intr accompanied, under certain conditions, by oscillations
the membrane potential (oscillatory afterpotentia
which are thought to be secondary events caused
intracellularly released calcium (see section IV B
Because of their r the membrane potential (oscillatory afterpotentials) which are thought to be secondary events caused by intracellularly released calcium (see section IV B 4).
Because of their resemblance to the oscillatory contractions of intracellularly released calcium (see section IV B 4).
Because of their resemblance to the oscillatory contractions of skinned muscle fibers, aftercontractions are swidely considered to represent a manifestation of cal-
c Because of their resemblance to the osci-
tions of skinned muscle fibers, afterc
widely considered to represent a manif
cium-induced calcium release in the intac
(94, 118, 142, 107, 79, 47, 297, 369, 4).
3. Asynchronous ca

widely considered to represent a manifestation of calcium-induced calcium release in the intact cardiac muscle the (94, 118, 142, 107, 79, 47, 297, 369, 4). Currely and $3.$ Asynchronous calcium release. Under conditions cium-induced calcium release in the intact cardiac muscle $(94, 118, 142, 107, 79, 47, 297, 369, 4)$.
3. Asynchronous calcium release. Under conditions of high Ca²⁺ loading in a sodium-free solution, Glitsch and Pott $($ (94, 118, 142, 107, 79, 47, 297, 369, 4). cu
3. Asynchronous calcium release. Under conditions of I_T
high Ca²⁺ loading in a sodium-free solution, Glitsch and the
Pott (142) observed spontaneous fluctuations of an in-
 3. Asynchronous calcium release. Under conditions of high Ca^{2+} loading in a sodium-free solution, Glitsch and Pott (142) observed spontaneous fluctuations of an increased resting force of guinea pig atrial trabeculae high Ca²⁺ loading in a sodium-free solution, Glitsch and the Pott (142) observed spontaneous fluctuations of an increased resting force of guinea pig atrial trabeculae. The afluctuations were thought to result from sp creased resting force of guinea pig atrial trabeculae. The atrial tissue, other workers have not observed a reversal
fluctuations were thought to result from spontaneous in I_{TI} and have suggested that I_{TI} may result creased resting force of guinea pig atrial trabeculae. The
fluctuations were thought to result from spontaneous
oscillations with asynchronous cycles in different parts
of the muscles which contributed to the increased res fluctuations were thought to result from spontaneous is
oscillations with asynchronous cycles in different parts
of the muscles which contributed to the increased resting 1
force. Since caffeine inhibited the fluctuations oscillations with asynchronous cycles in different parts
of the muscles which contributed to the increased resting
force. Since caffeine inhibited the fluctuations and si-
multaneously reduced the mean resting force, it s of the muscles which contributed to the increased resting
force. Since caffeine inhibited the fluctuations and si-
multaneously reduced the mean resting force, it seems
likely that asynchronous Ca^{2+} release from differ force. Since caffeine inhibited the fluctuations and si-
multaneously reduced the mean resting force, it seems
likely that asynchronous Ca^{2+} release from different
parts of the SR was responsible for the random motion. likely that asynchronous Ca^{2+} release from different parts of the SR was responsible for the random motion.
The latter could be interrupted by an electrically triglikely that asynchronous Ca^{2+} release from different relation parts of the SR was responsible for the random motion. circle latter could be interrupted by an electrically trig-weigred twitch which was followed by after parts of the SR was responsible for the random motic
The latter could be interrupted by an electrically tr
gered twitch which was followed by aftercontractio
and "hyper-relaxations" (200, 309). This was probable
due to the The latter could be interrupted by an electrically tri-
gered twitch which was followed by aftercontraction
and "hyper-relaxations" (200, 309). This was probab-
due to the synchronization of the spontaneous oscill
tions in and "hyper-relaxations" (200, 309). This was probably
due to the synchronization of the spontaneous oscilla-
tions in different cells as suggested from similar obser-
vations with rat papillary muscles by Stern et al. (36 d "hyper-relaxations" (200, 309). This was probably
e to the synchronization of the spontaneous oscilla-
ons in different cells as suggested from similar obser-
tions with rat papillary muscles by Stern et al. (369).
That

due to the synchronization of the spontaneous oscilla-
tions in different cells as suggested from similar obser-
vations with rat papillary muscles by Stern et al. (369). of
That $[Ca^{2+}]_i$ can fluctuate in intact, unstim tions in different cells as suggested from similar observations with rat papillary muscles by Stern et al. (369) . ol
That $[Ca^{2+}]_i$ can fluctuate in intact, unstimulated car-
diac muscle preparations has been shown by vations with rat papillary muscles by Stern et al. (369). That $[Ca^{2+}]_i$ can fluctuate in intact, unstimulated cardiac muscle preparations has been shown by means of sthe photoprotein aequorin (297, 415, 4) and in single That $[Ca^{2+}]_i$ can fluctuate in intact, unstimulated car-
diac muscle preparations has been shown by means of suf
the photoprotein aequorin (297, 415, 4) and in single
heart cells by both fura-2 fluorescence (414) and ae duate muscle preparations has been shown by means of summer
the photoprotein aequorin (297, 415, 4) and in single 5. (
heart cells by both fura-2 fluorescence (414) and aequorin lation
(105). Such oscillations of $[Ca^{2+}]$ heart cells by both fura-2 fluorescence (414) and aequorin latio (105). Such oscillations of $[Ca^{2+}]_i$ had previously been skel inferred from observations of laser light scattering from SR quiescent muscle (231). The spo (105). Such oscillations of $[Ca^{2+}]_i$ had previously been slinferred from observations of laser light scattering from Squiescent muscle (231). The spontaneous Ca^{2+} -dependent oscillations vary with species in a manner inferred from observations of laser light scattering from
quiescent muscle (231). The spontaneous Ca^{2+} -depend-
ent oscillations vary with species in a manner similar to
that for Ca^{2+} -induced release of Ca^{2+} from quiescent muscle (231). The spontaneous Ca^{2+} -dependent oscillations vary with species in a manner similar to that for Ca^{2+} -induced release of Ca^{2+} from the SR of mechanically skinned cardiac cells (120): Unstimul ent oscillations vary with species in a manner similar to
that for Ca^{2+} -induced release of Ca^{2+} from the SR of
mechanically skinned cardiac cells (120): Unstimulated
rat and canine tissues exhibit spontaneous oscill mechanically skinned cardiac cells (120): Unstimulated
rat and canine tissues exhibit spontaneous oscillations
even when extracellular calcium is as low as 2 mmol/
liter, whereas in rabbit ventricle the calcium concentra-
 rat and canine tissues exhibit spontaneous oscillations rat and canine tissues exhibit spontaneous oscillations
even when extracellular calcium is as low as 2 mmol/
liter, whereas in rabbit ventricle the calcium concentra-
tion must be considerably higher for oscillations to o even when extracellular calcium is as low as 2 mm
liter, whereas in rabbit ventricle the calcium concent
tion must be considerably higher for oscillations to occ
frog cardiac tissues do not exhibit oscillations even un
hi liter, whereas in rabbit ventricle the calcium concentrion must be considerably higher for oscillations to occurrog cardiac tissues do not exhibit oscillations even und high Ca^{2+} -loading conditions (230) —a fact that tion must be considerably higher for oscillations to occur; lafrog cardiac tissues do not exhibit oscillations even under shigh Ca²⁺-loading conditions (230)—a fact that presum-
ably reflects the paucity of their SR. Th frog cardiac tissues do not exhibit oscillations even und
high Ca²⁺-loading conditions (230)—a fact that presur
ably reflects the paucity of their SR. The general obse
vation that oscillations of cytosolic Ca²⁺ are ab high Ca²⁺-loading conditions (230)—a fact that presumably reflects the paucity of their SR. The general observation that oscillations of cytosolic Ca²⁺ are abolished by caffeine and ryanodine, both inhibitors of sarco ably reflects the paucity of their SR. The general observation that oscillations of cytosolic Ca^{2+} are abolished by caffeine and ryanodine, both inhibitors of sarco-plasmic reticulum function, supports the hypothesis t vation that oscillations of cytosolic Ca^{2+} are abolished Ca^{2+}
by caffeine and ryanodine, both inhibitors of sarco-
as a plasmic reticulum function, supports the hypothesis that caln
the oscillations of muscle force by caffeine and ryanodine, both inhibitors of saplasmic reticulum function, supports the hypothesis the oscillations of muscle force arise from a Ca-depent release of Ca from the SR (415, 4, 387). Howeve regard to the disc plasmic reticulum function, supports the hypothesis that calmodulin-dependent phosphorylation of the cardiac SR
the oscillations of muscle force arise from a Ca-depend-
ent release of Ca from the SR (415, 4, 387). However the oscillations of muscle force arise from a Ca-depend-
ent release of Ca from the SR (415, 4, 387). However, in
regard to the discussion on the mechanism of excitation-
contraction coupling, it is noteworthy that there a ent release of Ca from the SR $(415, 4, 387)$. However, in regard to the discussion on the mechanism of excitation-
contraction coupling, it is noteworthy that there are no
distinct differences in the influence of the two

ER
mechanical oscillation amplitude, it enhances the sportaneous frequency of Ca²⁺ release, but ryanodine sup ER
mechanical oscillation amplitude, it enhances the spon-
taneous frequency of Ca^{2+} release, but ryanodine sup-
presses both frequency and amplitude (230). ER
mechanical oscillation amplitude, it enhances
taneous frequency of Ca^{2+} release, but ryand
presses both frequency and amplitude (230).
4. Oscillatory afterpotentials. The oscillator *echanical oscillation amplitude*, it enhances the spon-
neous frequency of Ca²⁺ release, but ryanodine sup-
esses both frequency and amplitude (230).
4. *Oscillatory afterpotentials*. The oscillatory calcium
lease, besi

widely considered to represent a manifestation of cal-
cium-induced calcium release in the intact cardiac muscle
(34, 118, 142, 107, 79, 47, 297, 369, 4).
 $(34, 118, 142, 107, 79, 47, 297, 369, 4)$
3. Asynchronous calciu mechanical oscillation amplitude, it enhances the spon-
taneous frequency of Ca^{2+} release, but ryanodine sup-
presses both frequency and amplitude (230).
4. Oscillatory afterpotentials. The oscillatory calcium
release, taneous frequency of Ca^{2+} release, but ryanodine suppresses both frequency and amplitude (230).
4. Oscillatory afterpotentials. The oscillatory calcium
release, besides inducing oscillatory contractions, also
leads und presses both frequency and amplitude (230).
4. Oscillatory afterpotentials. The oscillatory calcium
release, besides inducing oscillatory contractions, also
leads under appropriate experimental conditions to os-
cillatory 4. Oscillatory afterpotentials. The oscillatory calcium
release, besides inducing oscillatory contractions, also
leads under appropriate experimental conditions to os-
cillatory afterpotentials or afterdepolarizations of t release, besides inducing oscillatory contractions, also
leads under appropriate experimental conditions to os-
cillatory afterpotentials or afterdepolarizations of the
sarcolemma (51, 201, 188, 322, 279, 127, 195, 101, 25 leads under appropriate experimental conditions to oscillatory afterpotentials or afterdepolarizations of the sarcolemma (51, 201, 188, 322, 279, 127, 195, 101, 25 244, 194). In cardiac Purkinje fibers, this may grow intsu cillatory afterpotentials or afterdepolarizations of the
sarcolemma (51, 201, 188, 322, 279, 127, 195, 101, 257,
244, 194). In cardiac Purkinje fibers, this may grow into
sustained rhythmic activity (390, 128, 88). The mem sarcolemma (51, 201, 188, 322, 279, 127, 195, 101, 257, 244, 194). In cardiac Purkinje fibers, this may grow into sustained rhythmic activity (390, 128, 88). The membrane current underlying these afterdepolarizations is t 244, 194). In cardiac Purkinje fibers, this may grow into sustained rhythmic activity (390, 128, 88). The membrane current underlying these afterdepolarizations is thought to be the calcium-activated transient inward curr sustained rhythmic activity (390, 128, 88). The membrane current underlying these afterdepolarizations is thought to be the calcium-activated transient inward current (I_{TI}) (236). The finding in Purkinje fibers that I_{TI brane current underlying these afterdepolarizations is
thought to be the calcium-activated transient inward
current (I_{TI}) (236). The finding in Purkinje fibers that
 I_{TI} showed a reversal potential at about -5 mV sup thought to be the calcium-activated transient inward
current (I_{TI}) (236). The finding in Purkinje fibers that
 I_{TI} showed a reversal potential at about -5 mV supported
the suggestion of a calcium-activated nonselecti I_{TI} showed a reversal potential at about -5 mV supported Fri subwear a veveral potential at about $-$ in W supported that the suggestion of a calcium-activated nonselective cation
channel (196, 66). However, in studies on ventricular and
atrial tissue, other workers have not channel (196, 66). However, in studies on ventricular and abolished after blockade of the inward calcium current atrial tissue, other workers have not observed a reversal
in I_{TI} and have suggested that I_{TI} may result from an
electrogenic sodium-calcium exchange (13, 262, 292, 140,
124). Lipp and Pott (242) found a reversal of in I_{TI} and have suggested that I_{TI} may result from an electrogenic sodium-calcium exchange (13, 262, 292, 140, 124). Lipp and Pott (242) found a reversal of I_{TI} to be abolished after blockade of the inward calciu electrogenic sodium-calcium exchange (13, 262, 292, 140, 124). Lipp and Pott (242) found a reversal of I_{TI} to be abolished after blockade of the inward calcium current (I_{Ca}) by D 600. The authors assumed that the ap 124). Lipp and Pott (242) found a reversal of I_{TI} to be abolished after blockade of the inward calcium current (I_{Ca}) by D 600. The authors assumed that the apparent reversal of I_{TI} is caused by intracellularly rele abolished after blockade of the inward calcium current (I_{Ca}) by D 600. The authors assumed that the apparent reversal of I_{TI} is caused by intracellularly released calcium which inactivates I_{Ca} . This would be in acc (I_{Ca}) by D 600. The authors assumed that the apparent reversal of I_{TI} is caused by intracellularly released calcium which inactivates I_{Ca} . This would be in accordance with an earlier observation by Bogdanov and c reversal of I_{TI} is caused by intracellularly released ca
cium which inactivates I_{Ca} . This would be in accordance
with an earlier observation by Bogdanov and coworke:
(47) of an inhibition of the slow-response action cium which inactivates I_{Ca} . This would be in accordariation with an earlier observation by Bogdanov and cowork (47) of an inhibition of the slow-response action potent during the aftercontraction. Consistent with the i with an earlier observation by Bogdanov and coworkers (47) of an inhibition of the slow-response action potential during the aftercontraction. Consistent with the interpretation that afterdepolarizations are caused by e (47) of an inhibition of the slow-response action potentia
during the aftercontraction. Consistent with the inter
pretation that afterdepolarizations are caused by electro
genic sodium-calcium exchange (section V A) is during the aftercontraction. Consistent with the inter-
pretation that afterdepolarizations are caused by electro-
genic sodium-calcium exchange (section V A) is the
observation that they are totally absent in spite of po pretation that afterdepolarizations are caused by electro-
genic sodium-calcium exchange (section V A) is the
observation that they are totally absent in spite of pow-
erful aftercontractions if cardiac muscles are kept fo observation that they are totally absent in spite of pow-
erful aftercontractions if cardiac muscles are kept for a
sufficiently long time in sodium-free solution (252, 70).
5. Oscillatory calcium release from isolated SR

skeletal muscle and Ca^{2+} -induced release of Ca^{2+} from erful aftercontractions if cardiac muscles are kept for a
sufficiently long time in sodium-free solution (252, 70).
5. Oscillatory calcium release from isolated SR. Oscillations in calcium release from isolated SR vesicle sufficiently long time in sodium-free solution (252, 70).

5. Oscillatory calcium release from isolated SR. Oscillations in calcium release from isolated SR vesicles of

skeletal muscle and Ca²⁺-induced release of Ca²⁺ 5. Oscillatory calcium release from isolated SR. Oscillations in calcium release from isolated SR vesicles of skeletal muscle and Ca^{2+} -induced release of Ca^{2+} from SR vesicles of cardiac muscle have been observed by lations in calcium release from isolated SR vesicles of $\frac{32}{27}$
skeletal muscle and Ca^{2+} -induced release of Ca^{2+} from SR vesicles of cardiac muscle have been observed by
several investigators (198, 197, 76). Alt skeletal muscle and Ca^{2+} -induced release of Ca^{2+} from SR vesicles of cardiac muscle have been observed by several investigators (198, 197, 76). Although the Ca^{2+} release rates from isolated canine cardiac SR at 3 SR vesicles of cardiac muscle have been observed by
several investigators (198, 197, 76). Although the Ca²⁺
release rates from isolated canine cardiac SR at 37°C
(76) were several orders of magnitude lower than the rate several investigators (198, 197, 76). Although the Ca²⁺
release rates from isolated canine cardiac SR at 37°C
(76) were several orders of magnitude lower than the rate
of Ca²⁺ release which occurs in muscle cells in v release rates from isolated canine cardiac SR at 37°C (76) were several orders of magnitude lower than the rate of Ca^{2+} release which occurs in muscle cells in vivo, this Ca^{2+} release phenomenon may be related to th (76) were several orders of magnitude lower than the i
of Ca^{2+} release which occurs in muscle cells in vivo, Ca^{2+} release phenomenon may be related to the Co
induced release of Ca^{2+} in skinned cardiac cells. The of Ca²⁺ release which occurs in muscle cells in vivo, this Ca²⁺ release phenomenon may be related to the Ca²⁺-
induced release of Ca²⁺ in skinned cardiac cells. The Ca²⁺
release from the SR vesicles (containing Ca²⁺ release phenomenon may be related to the Ca²⁺-
induced release of Ca²⁺ in skinned cardiac cells. The Ca²⁺
release from the SR vesicles (containing both subpopu-
lations, i.e., from longitudinal and junctional induced release of Ca²⁺ in skinned cardiac cells. The Ca²⁺
release from the SR vesicles (containing both subpopu-
lations, i.e., from longitudinal and junctional SR) is
specifically inhibited by ruthenium red, with an release from the SR vesicles (containing both subpopulations, i.e., from longitudinal and junctional SR) is specifically inhibited by ruthenium red, with an EC_{50} of 80 nmol/liter (77). Calmodulin has no effect on the r lations, i.e., from longitudinal and junctional SR) is
specifically inhibited by ruthenium red, with an EC_{50} of
80 nmol/liter (77). Calmodulin has no effect on the rate
or extent of the release, although reuptake of th specifically inhibited by ruthenium red, with an EC_{50} of 80 nmol/liter (77). Calmodulin has no effect on the rate or extent of the release, although reuptake of the released Ca^{2+} is faster in the presence of calmodu 80 nmol/liter (77). Calmodulin has no effect on the rate
or extent of the release, although reuptake of the released
Ca²⁺ is faster in the presence of calmodulin, presumably
as a result of enhanced Ca²⁺ transport acti (75). a^{2+} is faster in the presence of calmodulin, presumably
a result of enhanced Ca^{2+} transport activity due to
lmodulin-dependent phosphorylation of the cardiac SR
5).
In regard to the molecular mechanism of Ca^{2+} -i

as a result of enhanced Ca^{2+} transport activity due to calmodulin-dependent phosphorylation of the cardiac SR (75).

In regard to the molecular mechanism of Ca^{2+} -induced release of Ca^{2+} it is important that the calmodulin-dependent phosphorylation of the cardiac SR (75).

In regard to the molecular mechanism of Ca^{2+} -induced

release of Ca^{2+} it is important that the Ca^{2+} release is

not accompanied by a reduction in ATP (75). In regard to the molecular mechanism of Ca^{2+} -induced release of Ca^{2+} it is important that the Ca^{2+} release is not accompanied by a reduction in ATP hydrolysis and that Ca^{2+} influx proceeds during the per In regard to the molecular mechanism of Ca^{2+} -induced
release of Ca^{2+} it is important that the Ca^{2+} release is
not accompanied by a reduction in ATP hydrolysis and
that Ca^{2+} influx proceeds during the period of

PHARM
REV

aspet

CALCIUM MOBILIZATION AND CARDIA
reversal or cessation of inward Ca^{2+} pumping. This in and
turn suggests that Ca^{2+} release is not mediated through con CALCIUM MOBILIZATION AND CARE
reversal or cessation of inward Ca^{2+} pumping. This in at
turn suggests that Ca^{2+} release is not mediated through co
the Ca^{2+} pump protein, but occurs through a separate CALCIUM MOBILIZATION AND CAR
reversal or cessation of inward Ca^{2+} pumping. This in
turn suggests that Ca^{2+} release is not mediated through
the Ca^{2+} pump protein, but occurs through a separate
efflux pathway. The reversal or cessation of inward Ca^{2+} pumping. This in a
turn suggests that Ca^{2+} release is not mediated through c
the Ca^{2+} pump protein, but occurs through a separate
efflux pathway. The Ca^{2+} efflux is elicite reversal or cessation of inward Ca^{2+} pumping. This in and
turn suggests that Ca^{2+} release is not mediated through con
the Ca^{2+} pump protein, but occurs through a separate T
efflux pathway. The Ca^{2+} efflux is e turn suggests that Ca^{2+} release is not mediated through
the Ca^{2+} pump protein, but occurs through a separate
efflux pathway. The Ca^{2+} efflux is elicited by relatively
low Ca^{2+} concentrations and is significant the Ca²⁺ pump protein, but occurs through a separate efflux pathway. The Ca²⁺ efflux is elicited by relatively low Ca²⁺ concentrations and is significantly inhibited by elevations of $[Ca^{2+}]_o$. Both the rate and th efflux pathway. The Ca²⁺ efflux is elicited by relatively de
low Ca²⁺ concentrations and is significantly inhibited by fro
elevations of $[Ca^{2+}]_o$. Both the rate and the extent of net co
Ca²⁺ release from SR vesicl low Ca²⁺ concentrations and is significantly inhibited by
elevations of $[Ca^{2+}]_o$. Both the rate and the extent of net co
Ca²⁺ release from SR vesicles loaded to approximately the
the same total Ca²⁺ content depend elevations of $[Ca^{2+}]_o$. Both the rate and the extent of net Ca^{2+} release from SR vesicles loaded to approximately the same total Ca^{2+} content depend on the $[Ca^{2+}]_o$ at the onset of release. Since the Ca^{2+} tra Ca^{2+} release from SR vesicles loaded to approximately
the same total Ca^{2+} content depend on the $[Ca^{2+}]_o$ at the
onset of release. Since the Ca^{2+} transport ATPase of the
SR, which accounts for more than half the onset of release. Since the Ca²⁺ transport ATPase of the SR, which accounts for more than half the SR membrane mass, is the only known Ca²⁺-binding protein with a Ca²⁺ affinity high enough to bind much Ca²⁺ at the onset of release. Since the Ca²⁺ transport ATPase of the SR, which accounts for more than half the SR membrane mass, is the only known Ca²⁺-binding protein with a Ca²⁺ affinity high enough to bind much Ca²⁺ at the SR, which accounts for more than half the SR membrane
mass, is the only known Ca^{2+} -binding protein with a Ca^{2+} of about
affinity high enough to bind much Ca^{2+} at the concentrations that trigger release (91), one mass, is the only known Ca^{2+} -binding protein with a Ca^{2+} of a
affinity high enough to bind much Ca^{2+} at the concen-
trations that trigger release (91), one might assume that
it is the active uptake of Ca^{2+} int affinity high enough to bind much Ca^{2+} at the concentrations that trigger release (91), one might assume that under
it is the active uptake of Ca^{2+} into a Ca^{2+} -loaded SR. The
which evokes the release and not an e trations that trigger release (91), one might assume t
it is the active uptake of Ca^{2+} into a Ca^{2+} -loaded
which evokes the release and not an effect of Ca^{2+}
channel gate at the outside of the SR. However, for
und it is the active uptake of Ca^{2+} into a Ca^{2+} -loaded SR which evokes the release and not an effect of Ca^{2+} at a channel gate at the outside of the SR. However, for an understanding of the elementary processes of Ca which evokes the release and not an effect of Ca^{2+} at a channel gate at the outside of the SR. However, for an understanding of the elementary processes of Ca^{2+} -in-
duced release of Ca^{2+} the variables involved—th of Ca^{2+} loading and the relation between the Ca^{2+} concentrations inside and outside of the SR—will have to be independently controlled, since they all change as the $[Ca^{2+}]$ outside the SR is varied (115, 67).
6. Do centrations inside and outside of the SR—will have to
be independently controlled, since they all change as the
 $[Ca^{2+}]$ outside the SR is varied (115, 67).
6. Does the depolarization-induced contraction result
from calciu

centrations inside and outside of the SR—will have to
be independently controlled, since they all change as the
 $[Ca^{2+}]$ outside the SR is varied (115, 67).
6. Does the depolarization-induced contraction result
from calci be independently controlled, since they all change as the $[Ca^{2+}]$ outside the SR is varied (115, 67).
6. Does the depolarization-induced contraction result
from calcium-induced calcium release? Although it seems
very lik b. Does the aepotarization-induced contraction result has been increased by a few simulated twitches, the from calcium-induced calcium release? Although it seems latency is greatly reduced.

very likely that aftercontract 6. Does the depolarization-induced contraction result from calcium-induced calcium release? Although it seems
very likely that aftercontractions result from a Ca^{2+}
induced Ca^{2+} release, it is an open question whethe from calcium-induced calcium release? Although it see
very likely that aftercontractions result from a Cs
induced Ca²⁺ release, it is an open question whether
regular contraction of mammalian heart muscle is transpared very likely that aftercontractions result from a Ca^{2+} -
induced Ca^{2+} release, it is an open question whether the
regular contraction of mammalian heart muscle is trig-
gered by the fast initial component of transsarc induced Ca^{2+} release, it is an open question whether the regular contraction of mammalian heart muscle is trig-
gered by the fast initial component of transsarcolemmal Ca^{2+} flux (114, 116). What seems to be consiste regular contraction of mammalian heart muscle is triggered by the fast initial component of transsarcolemmal Ca^{2+} flux (114, 116). What seems to be consistent, at first sight, with such a mechanism is that in the skinn gered by the fast initial component of transsarcolemmal Ca^{2+} flux (114, 116). What seems to be consistent, at first sight, with such a mechanism is that in the skinned fiber, which consists of myofilaments surrounded b Ca²⁺ flux (114, 116). What seems to be consistent, at affirst sight, with such a mechanism is that in the skinned the fiber, which consists of myofilaments surrounded by SR, of a rapid increase in $[Ca^{2+}]$ produces a co first sight, with such a mechanism is that in the skinned the
fiber, which consists of myofilaments surrounded by SR, of r
a rapid increase in $[Ca^{2+}]$ produces a contraction (116). dev
However, if the $[Ca^{2+}]$ in this pr fiber, which consists of myofilaments surrounded by SR, of released calcium and evidenced by the velocity of force
a rapid increase in $[Ca^{2+}]$ produces a contraction (116). development (fig. 4). Therefore, it would be di a rapid increase in $[Ca^{2+}]$ produces a contraction (116). dev
However, if the $[Ca^{2+}]$ in this preparation is not reduced beli
to the original loading concentration after the twitch, a ing
new contraction will now appear However, if the $[Ca^{2+}]$ in this preparation is not reduced
to the original loading concentration after the twitch, a
new contraction will now appear a few seconds later (at
 22° C) and, according to the prevailing con to the original loading concentration after the twitch
new contraction will now appear a few seconds later
 22° C) and, according to the prevailing conditions,
oscillating cycle of Ca^{2+} uptake and release may be
duc new contraction will now appear a few seconds later (at 22°C) and, according to the prevailing conditions, an oscillating cycle of Ca²⁺ uptake and release may be induced as seen in fig. 4 of Fabiato (ref. 116). The appe 22°C) and, according to the prevailing conditions, a oscillating cycle of Ca^{2+} uptake and release may be in duced as seen in fig. 4 of Fabiato (ref. 116). The appean ance of such a cyclic repetition of the contraction oscillating cycle of Ca²⁺ uptake and release may be in-
duced as seen in fig. 4 of Fabiato (ref. 116). The appear-
ance of such a cyclic repetition of the contraction is
inhibited only if, as in Fabiato's usual experime duced as seen in fig. 4 of Fabiato (ref. 116). The appearance of such a cyclic repetition of the contraction is inhibited only if, as in Fabiato's usual experimental procedure, the cytosolic $[Ca^{2+}]$ is reduced immediatel ance of such a cyclic repetition of the contraction is
inhibited only if, as in Fabiato's usual experimental
procedure, the cytosolic $[Ca^{2+}]$ is reduced immediately
after the Ca^{2+} -induced contraction, i.e., after the inhibited only if, as in Fabiato's usual experimen
procedure, the cytosolic $[Ca^{2+}]$ is reduced immediat
after the Ca^{2+} -induced contraction, i.e., after the fi
part of the oscillation cycle. Therefore, it seems unlik
t procedure, the cytosolic $[Ca^{2+}]$ is reduced immediately after the Ca^{2+} -induced contraction, i.e., after the first part of the oscillation cycle. Therefore, it seems unlikely that there are fundamentally different rele part of the oscillation cycle. Therefore, it seems unlikely
that there are fundamentally different release mecha-
nisms between the first contraction which is "triggered"
by a fast increase in $[Ca^{2+}]$ and the consecutive part of the oscillation cycle. Therefore, it seems unlikely
that there are fundamentally different release mecha-
nisms between the first contraction which is "triggered"
by a fast increase in $[Ca^{2+}]$ and the consecutive that there are fundamentally different release mechanisms between the first contraction which is "triggered" by a fast increase in $[Ca^{2+}]$ and the consecutive spontaneous contractions. The situation seems quite similar a by a fast increase in $[Ca^{2+}]$ and the consecutive spontaneous contractions. The situation seems quite similar as in calcium release from isolated SR vesicles (see previous section), and in isolated cardiac myocytes under by a fast increase in $[Ca^{2+}]$ and the consecutive spontaneous contractions. The situation seems quite similar as in calcium release from isolated SR vesicles (see previous section), and in isolated cardiac myocytes under neous contractions. The situation seems quite similar as
in calcium release from isolated SR vesicles (see previous
section), and in isolated cardiac myocytes under condi-
tions of electrochemical shunting across the exter section), and in isolated cardiac myocytes under condi-
tions of electrochemical shunting across the external
membrane (83). In these myocytes, phasic contractile
activation occurs independently of sarcolemmal excita-
tio section), and in isolated cardiac myocytes under cor-
tions of electrochemical shunting across the exter-
membrane (83). In these myocytes, phasic contrac-
activation occurs independently of sarcolemmal excu-
tion at Ca^{2 tions of electrochemical shunting across the external
membrane (83). In these myocytes, phasic contractile
activation occurs independently of sarcolemmal excita-
tion at Ca^{2+} concentrations sustaining calcium accumu-
l membrane (83). In these myocytes, phasic contractile activation occurs independently of sarcolemmal excitation at Ca^{2+} concentrations sustaining calcium accumulation in the SR, as proven by electron probe analysis. $Ca^{$

RDIAC INOTROPIC MECHANISMS 199
and a rate-limiting factor for the occurrence of phasic
contractile activation (83).
That the actual Ca^{2+} uptake into the SR might play a CONTROPIC MECHANISS
and a rate-limiting factor for
contractile activation (83).
That the actual Ca^{2+} uptal

channel gate at the outside of the SR. However, for an
understanding of the elementary processes of Ca^{2+} -in-
duced release of Ca^{2+} the variables involved—the extent
of Ca^{2+} to prevent much force development. And duced release of Ca^{2+} the variables involved—the extent
of Ca^{2+} loading and the relation between the Ca^{2+} con-
centrations inside and outside of the SR—will have to
be independently controlled, since they all cha IAC INOTROPIC MECHANISMS 199

od a rate-limiting factor for the occurrence of phasic

intractile activation (83).

That the actual Ca²⁺ uptake into the SR might play a

ccisive role in Ca²⁺-induced Ca²⁺ release can and a rate-limiting factor for the occurrence of phasic
contractile activation (83).
That the actual Ca²⁺ uptake into the SR might play a
decisive role in Ca²⁺-induced Ca²⁺ release can be inferred
from the time-depe and a rate-limiting factor for the occurrence of phasic
contractile activation (83).
That the actual Ca²⁺ uptake into the SR might play a
decisive role in Ca²⁺-induced Ca²⁺ release can be inferred
from the time-depe contractile activation (83).
That the actual Ca²⁺ uptake into the SR might play a
decisive role in Ca²⁺-induced Ca²⁺ release can be inferred
from the time-dependent appearance of the Ca²⁺-induced
contractions in f That the actual Ca²⁺ uptake into the SR might play a decisive role in Ca²⁺-induced Ca²⁺ release can be inferred from the time-dependent appearance of the Ca²⁺-induced contractions in figs. 6, 10, and 12 of Fabiato decisive role in Ca^{2+} -induced Ca^{2+} release can be inferred
from the time-dependent appearance of the Ca^{2+} -induced
contractions in figs. 6, 10, and 12 of Fabiato (116). With
the increase in the number of mixed fas from the time-dependent appearance of the Ca^{2+} -induced
contractions in figs. 6, 10, and 12 of Fabiato (116). With
the increase in the number of mixed fast and slow Ca^{2+} -
loading pulses, the contraction response is n contractions in figs. 6, 10, and 12 of Fabiato (116). With
the increase in the number of mixed fast and slow Ca^{2+} -
loading pulses, the contraction response is not only in-
creased ("graded response"), but also the late the increase in the number of mixed fast and slow Ca^{2+} -loading pulses, the contraction response is not only increased ("graded response"), but also the latency of its appearance is drastically reduced from an original loading pulses, the contraction response is not only in-
creased ("graded response"), but also the latency of its
appearance is drastically reduced from an original value
of about 1000 ms. These results have a striking sim creased ("graded response"), but also the latency of its
appearance is drastically reduced from an original value
of about 1000 ms. These results have a striking similarity
to the behavior of the intact guinea pig papilla appearance is drastically reduced from an original value
of about 1000 ms. These results have a striking similarity
to the behavior of the intact guinea pig papillary muscle
under rested state conditions described in sect of about 1000 ms. These results have a striking similarity
to the behavior of the intact guinea pig papillary muscle
under rested state conditions described in section III A.
They illustrate very clearly that, when Ca^{2+} to the behavior of the intact guinea pig papillary muscle under rested state conditions described in section III A. They illustrate very clearly that, when Ca^{2+} enters the cell at a rate similar to that during the plat under rested state conditions described in section III A.
They illustrate very clearly that, when Ca^{2+} enters the
cell at a rate similar to that during the plateau of the
action potential, the SR is capable of taking i They illustrate very clearly that, when Ca^{2+} enters the cell at a rate similar to that during the plateau of the action potential, the SR is capable of taking it up fast enough to prevent much force development. And th cell at a rate similar to that during the plateau of the action potential, the SR is capable of taking it up fast enough to prevent much force development. And they are a strong argument against the idea that, in the rest action potential, the SIV is capable of taking it up fast
enough to prevent much force development. And they
are a strong argument against the idea that, in the rested
state contraction, force development results from the are a strong argument against the idea that, in the rested
state contraction, force development results from the
diffusion of Ca^{2+} directly from the surface membrane to
the myofibrils. Fabiato's results also show that, state contraction, force development results from the diffusion of Ca^{2+} directly from the surface membrane to the myofibrils. Fabiato's results also show that, when the SR is relatively poorly loaded with Ca^{2+} , Ca^{2 cell at a rate similar to that during the plateau of the
action potential, the SR is capable of taking it up fast
ecouponent. And they
encoupon trove development. And they
are a strong argument against the idea that, in t the myofibrils. Fabiato's re
SR is relatively poorly loo
release occurs with a long l
has been increased by a
latency is greatly reduced.
The wide variation in R is relatively poorly loaded with Ca^{2+} , Ca^{2+} -induced lease occurs with a long latency, whereas when loading as been increased by a few simulated twitches, the tency is greatly reduced. The wide variation in latency

release occurs with a long latency, whereas when loading
has been increased by a few simulated twitches, the
latency is greatly reduced.
The wide variation in latency of the Ca^{2+} -induced
contraction in skinned fibers s has been increased by a few simulated twitches, and intency is greatly reduced.
The wide variation in latency of the Ca^{2+} -inducontraction in skinned fibers seems not to be consist with the mechanical behavior of the in latency is greatly reduced.
The wide variation in latency of the Ca^{2+} -induced contraction in skinned fibers seems not to be consistent with the mechanical behavior of the intact cell. Repetitive electrical stimulations The wide variation in latency of the Ca^{2+} -induced
contraction in skinned fibers seems not to be consistent
with the mechanical behavior of the intact cell. Repeti-
tive electrical stimulations usually induce contractio contraction in skinned fibers seems not to be consistent
with the mechanical behavior of the intact cell. Repeti-
tive electrical stimulations usually induce contractions
after a latency which remains constant irrespective with the mechanical behavior of the intact cell. Repetitive electrical stimulations usually induce contractions after a latency which remains constant irrespective of the inotropic state which is determined by the amount o tive electrical stimulations usually induce contractions

after a latency which remains constant irrespective of

the inotropic state which is determined by the amount

of released calcium and evidenced by the velocity of after a latency which remains constant irrespective of
the inotropic state which is determined by the amount
of released calcium and evidenced by the velocity of force
development (fig. 4). Therefore, it would be difficult the inotropic state which is determined by the amount
of released calcium and evidenced by the velocity of force
development (fig. 4). Therefore, it would be difficult to
believe that calcium fluxes through the sarcolemma ing the action potential, regardless of whether they occur

fig. 4. The effect of increasing calcium load on the contractile
behavior of mammalian ventricular muscle. Superimposed force records
of a guinea pig papillary muscle in the presence of dihydroouabain. *a*,
steady-state ef behavior of mammalian ventricular muscle. Superimposed force records of a guinea pig papillary muscle in the presence of dihydroouabain. a , steady-state effects; b , effects of 120 μ mol/liter of dihydroouabain as a (321).

200
through calcium channels or via Na-Ca exchange, are me
primarily involved in the depolarization-induced Ca²⁺ be 200 RET
through calcium channels or via Na-Ca exchange, are
primarily involved in the depolarization-induced Ca^{2+}
release. release. rough calcium channels or via Na-Ca exchange, are imarily involved in the depolarization-induced Ca^2 lease.
Fabiato points out that the observation of a well-veloped Ca^{2+} -induced release of Ca^{2+} in skinned car

through calcium channels or via Na-Ca exchange, are
primarily involved in the depolarization-induced Ca^{2+}
release.
Fabiato points out that the observation of a well-
developed Ca^{2+} -induced release of Ca^{2+} in skin primarily involved in the depolarization-induced Ca^{2+} belease.

Fabiato points out that the observation of a well-

developed Ca^{2+} -induced release of Ca^{2+} in skinned car-

diac cells in which all superficial coup release.
Fabiato points out that the observation of a we
developed Ca^{2+} -induced release of Ca^{2+} in skinned ca
diac cells in which all superficial couplings are remov
proves that the release was not from the terminal Fabiato points out that the observation of a well-reduced developed Ca^{2+} -induced release of Ca^{2+} in skinned car-
diac cells in which all superficial couplings are removed C
proves that the release was not from the t developed Ca^{2+} -induced release of Ca^{2+} in skinned cardiac cells in which all superficial couplings are removed
proves that the release was not from the terminal cister-
nae (116). The absence or paucity of junctiona diac cells in which all superficial couplings are removed
proves that the release was not from the terminal cister-
nae (116). The absence or paucity of junctional SR in
the skinned preparations can also be deduced from t proves that the release was not from the terminal cister-
nae (116). The absence or paucity of junctional SR in from
the skinned preparations can also be deduced from their br-
low sensitivity to ruthenium red and ryanodi nae (116). The absence or paucity of junctional SR
the skinned preparations can also be deduced from th
low sensitivity to ruthenium red and ryanodine (11
substances which specifically act on Ca^{2+} channels of t
junctio the skinned preparations can also be deduced from th
low sensitivity to ruthenium red and ryanodine (11
substances which specifically act on Ca^{2+} channels of t
junctional SR (356, 130, 307; see section IV D). The
fore, low sensitivity to ruthenium red and ryanodine (117),
substances which specifically act on Ca^{2+} channels of the
junctional SR (356, 130, 307; see section IV D). There-
fore, the Ca^{2+} release in skinned fibers must b substances which specifically act on Ca^{2+} channels of the junctional SR (356, 130, 307; see section IV D). Therefore, the Ca^{2+} release in skinned fibers must be considered to occur from the free longitudinal SR thro nctional SR (356, 130, 307; see section IV D). The, the Ca²⁺ release in skinned fibers must be coned to occur from the free longitudinal SR through o²⁺ channels than those specific for the junctional There are two ess

fore, the Ca^{2+} release in skinned fibers must be conserved to occur from the free longitudinal SR through ot Ca^{2+} channels than those specific for the junctional ST here are two essentials of a normal action potenti ered to occur from the free longitudinal SR through other Ca^{2+} channels than those specific for the junctional SR.
There are two essentials of a normal action potential-
triggered release mechanism which apparently nec Ca^{2+} channels than those specific for the junctional SR.
There are two essentials of a normal action potential-
triggered release mechanism which apparently necessi-
tate the junctional connection between the sarcolemm There are two essentials of a normal action potentitiggered release mechanism which apparently necestate the junctional connection between the sarcolem and the adjacent junctional SR, and which therefore cannot be met by triggered release mechanism which apparently necessi-
tate the junctional connection between the sarcolemma and
and the adjacent junctional SR, and which therefore u
cannot be met by Ca^{2+} -induced Ca^{2+} release as dem tate the junctional connection between the sarcolem
and the adjacent junctional SR, and which thereficannot be met by Ca^{2+} -induced Ca^{2+} release as demostrated either in skinned fibers or in aftercontractions
intact and the adjacent junctional SR, and which therefore ur cannot be met by Ca^{2+} -induced Ca^{2+} release as demon-
strated either in skinned fibers or in aftercontractions of of
intact cells. (a) The release has to be swit cannot be met by Ca^{2+} -induced Ca^{2+} release as demon-
strated either in skinned fibers or in aftercontractions of of filling of the junctional SR.
intact cells. (a) The release has to be switched on instan-
taneously intact cells. (a) The release has to be switched on instantaneously with a short and constant latency. (b) The release mechanism has to be switched off again with the repolarization of the sarcolemma. I have already d intact cells. (a) The release has to be switched on instant taneously with a short and constant latency. (b) The release mechanism has to be switched off again with the repolarization of the sarcolemma. I have already taneously with a short and constant latency. (b) The release mechanism has to be switched off again with the repolarization of the sarcolemma. I have already discussed the question of the mechanical latency. The influ-
en repolarization of the sarcolemma. I have already dis-
cussed the question of the mechanical latency. The influ-
extracellular potassium
ence of the repolarization on the duration of the release
concentration, one studies repolarization of the sarcolemma. I have already discussed the question of the mechanical latency. The influence of the repolarization on the duration of the release and consequently on the time to peak force becomes evide cussed the question of the mechanical latency. The in
ence of the repolarization on the duration of the rele
and consequently on the time to peak force becon
evident when the duration of the action potential is eit
prolong ence of the repolarization on the duration of the release cand consequently on the time to peak force becomes mevident when the duration of the action potential is either hypolonged, as in rested state contractions by cat and consequently on the time to peak force becomes mevident when the duration of the action potential is either lum
prolonged, as in rested state contractions by catechol-
amines (24, 345) or cesium (323; see section III evident when the duration of the action potential is either
prolonged, as in rested state contractions by catechol-
mamines (24, 345) or cesium (323; see section III B), or
shortened with increasing Ca^{2+} load. Conseque amines (24, 345) or cesium (323; see section III B), or
sintervals), the contractions of ventricular muscle have
shortened with increasing Ca^{2+} load. Consequently, as only a late and no early peak (346, 255, 417, 186). amines (24, 345) or cesium (323; see section III B), or shortened with increasing Ca^{2+} load. Consequently, as shown in fig. 4b, a digitalis-induced increase in Ca^{2+} load causes a progressive shortening of the time t shortened with increasing Ca^{2+} load. Consequently, as
shown in fig. 4b, a digitalis-induced increase in Ca^{2+} load
causes a progressive shortening of the time to peak force
despite an unchanged rate of force developm shown in fig. 4b, a digitalis-induced increase in Ca^{2+} load
causes a progressive shortening of the time to peak force
despite an unchanged rate of force development as evi-
dent from the unchanged steepness of the isom causes a progressive shortening of the time to peak force
despite an unchanged rate of force development as evident from the unchanged steepness of the isometric do
contraction curve, indicating that the initial Ca^{2+} r despite an unchanged rate of force development as evident from the unchanged steepness of the isometric contraction curve, indicating that the initial Ca^{2+} release is probably not inhibited. This is in accordance with dent from the unchanged steepness of the isometric contraction curve, indicating that the initial Ca^{2+} release is probably not inhibited. This is in accordance with the finding that the diminution of force development contraction curve, indicating that the initial Ca^{2+} release
is probably not inhibited. This is in accordance with the
finding that the diminution of force development under
comparable conditions of Ca overload is not a is probably not inhibited. This is in accordance with the finding that the diminution of force development under comparable conditions of Ca overload is not accompanied by a decrease of the systolic Ca signal as estimated finding that the diminution of force development under
comparable conditions of Ca overload is not accompanied
by a decrease of the systolic Ca signal as estimated from
the peak systolic light signal measured with aequorin by a decrease of the systolic Ca signal as estimated from
the peak systolic light signal measured with aequorin (5).
The unabated maximal rate of force development pre-
cludes a reduced Ca sensitivity of the contractile ap by a decrease of the systolic Ca signal as estimated from
the peak systolic light signal measured with acquorin (5) .
The unabated maximal rate of force development pre-
cludes a reduced Ca sensitivity of the contractile the peak systolic light signal measured with aequorin (The unabated maximal rate of force development picludes a reduced Ca sensitivity of the contractile appratus as a cause for the shortening of the time to pe force and The unabated maximal rate of force development pre-
cludes a reduced Ca sensitivity of the contractile appa-
ratus as a cause for the shortening of the time to peak
force and the resulting decline of the contraction amplicludes a reduced Ca sensitivity of the contractile apparatus as a cause for the shortening of the time to peak
force and the resulting decline of the contraction ampli-
tude. The abbreviation of the ascending slope of the
 ratus as a cause for the shortening of the time to peartion-dependent of the contraction amplement tude. The abbreviation of the ascending slope of the contraction-dependent closing of the Ca release chan-
repolarization-d force and the resulting decline of the contraction amplitude. The abbreviation of the ascending slope of the contraction curve very likely results from an earlier repolarization-dependent closing of the Ca release channels tude. The abbreviation of the ascending slope of the
contraction curve very likely results from an earlier
repolarization-dependent closing of the Ca release chan-
nels which would accelerate the impact of the fast Ca
upta contraction curve very likely results from an earlier repolarization-dependent closing of the Ca release channels which would accelerate the impact of the fast Ca uptake system of the SR on the Ca release from the contract repolarization-dependent closing of the Ca release chan-
nels which would accelerate the impact of the fast Ca
uptake system of the SR on the Ca release from the (m
contractile proteins. A shortening of the action potenti uptake system of the SR on the Ca release from the (mmol/l)
contractile proteins. A shortening of the action potential FIG. 5. Influence of potassium and stimulation frequency on cal-
duration in mammalian heart muscle le uptake system of the SR on the Ca release from the contractile proteins. A shortening of the action potential duration in mammalian heart muscle leads generally to an abbreviation of the time to, and consequently to a redu contractile proteins. A shortening of the action potent
duration in mammalian heart muscle leads generally
an abbreviation of the time to, and consequently to
reduction of, the contraction peak as was demonstrat
by Morad a

ER
ments. The rate of force development in fig. 4*b* begins to
be reduced only if the resting force is increased by about ER
ments. The rate of force development in fig. 4b begins to
be reduced only if the resting force is increased by about
100%, indicating that the increase in diastolic $[Ca^{2+}]_i$ ER
ments. The rate of force development in fig. 4b begins to
be reduced only if the resting force is increased by about
100%, indicating that the increase in diastolic $[Ca^{2+}]_i$
reduces the rate of Ca^{2+} release and/or ments. The rate of force development in fig. 4b begins to be reduced only if the resting force is increased by about 100%, indicating that the increase in diastolic $[Ca^{2+}]$; reduces the rate of Ca^{2+} release and/or the ments. The rate of force de
be reduced only if the resti
100%, indicating that the
reduces the rate of Ca^{2+} rel
of the contractile proteins.
Considering the availab reduced only if the resting force is increased by about 0%, indicating that the increase in diastolic $[Ca^{2+}]_i$ duces the rate of Ca^{2+} release and/or the Ca sensitivity the contractile proteins.
Considering the availa 100%, indicating that the increase in diastolic $[Ca^{2+}]$;
reduces the rate of Ca^{2+} release and/or the Ca sensitivity
of the contractile proteins.
Considering the available evidence, one obtains the
following picture of

reduces the rate of Ca^{2+} release and/or the Ca sensitivit
of the contractile proteins.
Considering the available evidence, one obtains the
following picture of the different modes of Ca^{2+} release
from the SR in the of the contractile proteins.
Considering the available evidence, one obtains following picture of the different modes of Ca^{2+} rele
from the SR in the intact cell. At normal resting me
brane potentials, spontaneous cont Considering the available evidence, one obtains following picture of the different modes of Ca^{2+} rel from the SR in the intact cell. At normal resting m brane potentials, spontaneous contractions or after tractions (i. following picture of the different modes of Ca^{2+} release
from the SR in the intact cell. At normal resting mem-
brane potentials, spontaneous contractions or aftercon-
tractions (i.e., contractions not induced by depol from the SR in the intact cell. At normal resting mem-
brane potentials, spontaneous contractions or aftercon-
tractions (i.e., contractions not induced by depolariza-
tion) are the result of Ca^{2+} -induced release of Ca brane potentials, spontaneous contractions or aftercon-
tractions (i.e., contractions not induced by depolariza-
tion) are the result of Ca^{2+} -induced release of Ca^{2+} from
a heavily loaded SR, which probably takes pl tractions (i.e., contractions not induced by depolariza-
tion) are the result of Ca^{2+} -induced release of Ca^{2+} from
a heavily loaded SR, which probably takes place mainly
through channels other than those involved in a heavily loaded SR, which probably takes place mainly through channels other than those involved in the depolarization-induced release of Ca^{2+} . These contractions are usually smaller than the electrically triggered co a heavily loaded SR, which probably takes place main
through channels other than those involved in the d
polarization-induced release of Ca^{2+} . These contraction
are usually smaller than the electrically triggered co
tr through channels other than those involved in the de-
polarization-induced release of Ca^{2+} . These contractions
are usually smaller than the electrically triggered con-
traction (418). It is only by depolarization of th polarization-induced release of Ca^{2+} . These contractions
are usually smaller than the electrically triggered con-
traction (418). It is only by depolarization of the sarco-
lemma that the Ca channels of the release com are usually smaller than the electrically triggered con-
traction (418). It is only by depolarization of the sarco-
lemma that the Ca channels of the release compartments
are effectively opened by a mechanism which is sti traction (418). It is only by depolarization of the sarco-
lemma that the Ca channels of the release compartments
are effectively opened by a mechanism which is still not
understood in detail (see section IV C), and the ca lemma that the Ca channels of the are effectively opened by a mech understood in detail (see section is released through these channels of filling of the junctional SR. *C. Voltage-dependent Caccion IV C)*, and is released through these channels according of the junctional SR.
C. Voltage-dependent Calcium Release
More insight into the mechanism by wh

released through these channels according to the state
filling of the junctional SR.
Voltage-dependent Calcium Release
More insight into the mechanism by which the release
pre of the sarcoplasmic reticulum releases calcium of filling of the junctional SR.
C. Voltage-dependent Calcium Release
More insight into the mechanism by which the release
store of the sarcoplasmic reticulum releases calcium can
be obtained if, by varying the extracellul C. Voltage-dependent Calcium Release

More insight into the mechanism by which the release

store of the sarcoplasmic reticulum releases calcium can

be obtained if, by varying the extracellular potassium

concentration, concentration, one studies the release
More insight into the mechanism by which the release
store of the sarcoplasmic reticulum releases calcium can
be obtained if, by varying the extracellular potassium
concentration, one More insight into the mechanism by which the release
store of the sarcoplasmic reticulum releases calcium can
be obtained if, by varying the extracellular potassium
concentration, one studies the relation between resting
m store of the sarcoplasmic reticulum releases calcium can
be obtained if, by varying the extracellular potassium
concentration, one studies the relation between resting
membrane potential and early contraction peak. In sobe obtained if, by varying the extracellular potassium
concentration, one studies the relation between resting
membrane potential and early contraction peak. In so-
lutions with a potassium concentration higher than 8
mmol concentration, one studies the relation between resting
membrane potential and early contraction peak. In so-
lutions with a potassium concentration higher than 8
mmol/liter and at low contraction frequencies (10- or 5-
s membrane potential and early contraction peak. In solutions with a potassium concentration higher than 8 mmol/liter and at low contraction frequencies (10- or 5-
s intervals), the contractions of ventricular muscle have
on flutions with a potassium concentration higher than 8
mmol/liter and at low contraction frequencies (10- or 5-
s intervals), the contractions of ventricular muscle have
only a late and no early peak (346, 255, 417, 186).
H s intervals), the contractions of ventricular muscle have
only a late and no early peak (346, 255, 417, 186).
However, when these contractions are followed by a
stimulus after a 1-s interval, the resulting test beat shows
 only a late and no early peak (346, 255, 417, 186).
However, when these contractions are followed by a
stimulus after a 1-s interval, the resulting test beat shows
an early contraction peak in addition to the late one, as
 However, when these contractions are followed by a
stimulus after a 1-s interval, the resulting test beat shows
an early contraction peak in addition to the late one, as
does a regular low frequency contraction at the norm stimulus after a 1-s interval, the resulting test beat shows
an early contraction peak in addition to the late one, as
does a regular low frequency contraction at the normal
potassium concentration of 5.9 mmol/liter (fig. an early contraction peak in addition to the late one, as
does a regular low frequency contraction at the normal
potassium concentration of 5.9 mmol/liter (fig. 5). This
indicates that the release store was filled (reprim

(mmol/l)
FIG. 5. Influence of potassium and stimulation frequency on cal-
cium stored in release compartments. Contractions of a guinea pig
papillary muscle in the presence of 3 μ mol/liter of norepinephrine at
0.2 Hz f cium stored in release compartments. Contractions of a guinea p
papillary muscle in the presence of 3μ mol/liter of norepinephrine
0.2 Hz frequency; test contraction after an interval of 800 ms (so
stimulation pattern a

tween regular beats at low frequency showed that the CALCIUM MOBILIZATION AND CARDI
contraction. Test contractions at various intervals be-
tween regular beats at low frequency showed that the
ability of the muscle to produce early contraction com-CALCIUM MOBILIZATION AND
contraction. Test contractions at various intervals be
tween regular beats at low frequency showed that th
ability of the muscle to produce early contraction com-
ponents is lost in a few seconds (contraction. Test contractions at various intervals be-
tween regular beats at low frequency showed that the
ability of the muscle to produce early contraction com-
ponents is lost in a few seconds (346, 255, 417) and that contraction. Test contractions at various intervals be-
tween regular beats at low frequency showed that the
ability of the muscle to produce early contraction com-
ponents is lost in a few seconds $(346, 255, 417)$ and t tween regular beats at low frequency showed that the ability of the muscle to produce early contraction components is lost in a few seconds (346, 255, 417) and that the rate of loss depends on the extracellular potassium ability of the muscle to produce early contraction com-
ponents is lost in a few seconds $(346, 255, 417)$ and that Ca^{2+}
the rate of loss depends on the extracellular potassium SR/
concentration, i.e., on the resting m ponents is lost in a few seconds (346, 255, 417) and that Ca^{2}
the rate of loss depends on the extracellular potassium SR,
concentration, i.e., on the resting membrane potential that
(in the range between -77 mV and the rate of loss depends on the extracellular potassium Sconcentration, i.e., on the resting membrane potential the range between -77 mV and -59 mV at [K]₀ of 8 for 16 mmol/liter, respectively; ref. 399). Increases concentration, i.e., on the resting membrane potential the (in the range between -77 mV and -59 mV at [K]_o of 8 for 16 mmol/liter, respectively; ref. 399). Increases in actively²⁺]_o or [Ca²⁺]_o prevent the po (in the range between -77 mV and -59 mV at $[K]_0$ of 8 or 16 mmol/liter, respectively; ref. 399). Increases in $[Mg^{2+}]_0$ or $[Ca^{2+}]_0$ prevent the potassium-induced loss of the early contraction component without alt or 16 mmol/liter, respectively; ref. 399). Increases in $[Mg^{2+}]_o$ or $[Ca^{2+}]_o$ prevent the potassium-induced loss of the early contraction component without altering the effect of potassium on the transmembrane potentia [Mg²⁺]_o or [Ca²⁺]_o prevent the potassium-induced loss
the early contraction component without altering t
effect of potassium on the transmembrane potent
(399). These results have been interpreted as follows.
low e the early contraction component without altering the calciu
effect of potassium on the transmembrane potential heavy
(399). These results have been interpreted as follows. At of bot
low extracellular K^+ concentrations, effect of potassium on the transmembrane potential (399). These results have been interpreted as follows. At low extracellular K^+ concentrations, i.e., during hyperpolarization, there is only a small leakage of calcium (399). These results have been interpreted as follows. At low extracellular K^+ concentrations, i.e., during hyper-
polarization, there is only a small leakage of calcium
from the store of the SR in cardiac muscle. Ther low extracellular K^+ concentrations, i.e., during hyper-
polarization, there is only a small leakage of calcium fiec
from the store of the SR in cardiac muscle. Therefore tide
enough calcium remains in the SR to cause polarization, there is only a small leakage of calcium firm the store of the SR in cardiac muscle. Therefore tien ough calcium remains in the SR to cause a distinct dearly contraction component. As $[K^+]_o$ is elevated and from the store of the SR in cardiac muscle. Therefore
enough calcium remains in the SR to cause a distinct
early contraction component. As $[K^+]_o$ is elevated and
membrane potential is made less negative, a voltage
sensor enough calcium remains in the SR to cause a distinct dearly contraction component. As $[K^+]_o$ is elevated and comembrane potential is made less negative, a voltage usensor is affected by the membrane potential in a manner early contraction component. As $[K^+]_o$ is elevated and comembrane potential is made less negative, a voltage uis
sensor is affected by the membrane potential in a manner flu
that opens some sarcomplasmic reticulum channe membrane potential is made less negative, a voltage
sensor is affected by the membrane potential in a manner
that opens some sarcomplasmic reticulum channels. This
reduces the amount of stored calcium available for the
ear sensor is affected by the membrane potential in a manner flue that opens some sarcomplasmic reticulum channels. This IV reduces the amount of stored calcium available for the relearly contraction component. The effect of t that opens some sarcomplasmic reticulum channels. This IV I
reduces the amount of stored calcium available for the rele
early contraction component. The effect of the divalent the
cations is to change a surface potential (reduces the amount of stored calcium available for the relearly contraction component. The effect of the divalent the cations is to change a surface potential (163) of the sarcolemma and thus alter the electric field sense early contraction component. The effect of the dival
cations is to change a surface potential (163) of
sarcolemma and thus alter the electric field sensed
the voltage sensor. Consistent with this hypothesis is
observation cations is to change a surface potential (163) of the the sarcolemma and thus alter the electric field sensed by prethe voltage sensor. Consistent with this hypothesis is the brobservation made by Mascher (252) in partiall sarcolemma and thus alter the electric field sensed by pro
the voltage sensor. Consistent with this hypothesis is the briobservation made by Mascher (252) in partially depolar-
ized (18.9 mmol/liter of KCl) cat papillary the voltage sensor. Consistent with this hypothesis is the brookservation made by Mascher (252) in partially depolarized (18.9 mmol/liter of KCl) cat papillary muscles which were kept in low sodium solution and, therefore observation made by Mascher (252) in partially depolarized $(18.9 \text{ mmol/liter of KCl})$ cat papillary muscles which were kept in low sodium solution and, therefore, had Ca^{2+} -filled release stores. These muscles had lost the ab ized (18.9 mmol/liter of KCl) cat papillary muscles which Swere kept in low sodium solution and, therefore, had tion Ca²⁺-filled release stores. These muscles had lost the suggebility to respond with action potentials (were kept in low sodium solution and, therefore, had Ca^{2+} -filled release stores. These muscles had lost the ability to respond with action potentials (and slow inward currents) to electrical stimuli and responded to st $Ca²⁺$ -filled release stores. These muscles had lost ability to respond with action potentials (and slow ward currents) to electrical stimuli and responded stimuli of increasing strength with graded electrotonic displ ability to respond with action potentials (and slow in-
ward currents) to electrical stimuli and responded to
stimuli of increasing strength with graded electrotonic
responses. Small increments in the electrotonic displace ward currents) to electrical stimuli and responded
stimuli of increasing strength with graded electrotor
responses. Small increments in the electrotonic disple
ment of the membrane potential yielded marked
creases in the m tion. sponses. Small increments in the electrotonic displace-
ent of the membrane potential yielded marked in-
eases in the magnitude of the associated early contrac-
on.
It points to the similarity of the release mechanisms
ske ment of the membrane potential yielded marked increases in the magnitude of the associated early contraction.
It points to the similarity of the release mechanisms
in skeletal and in cardiac muscle that, in skeletal muscle

creases in the magnitude of the associated early contraction.

It points to the similarity of the release mechanisms

in skeletal and in cardiac muscle that, in skeletal muscle,

a "slow" release of calcium has also been o ion.
It points to the similarity of the release mechanisms
in skeletal and in cardiac muscle that, in skeletal muscle,
a "slow" release of calcium has also been observed at
potassium concentrations above 8 mmol/liter but It points to the similarity of the release mechanisms evident in skeletal and in cardiac muscle that, in skeletal muscle, SF a "slow" release of calcium has also been observed at contracture threshold. Elevations of $[K^+]$ in skeletal and in cardiac muscle that, in skeletal muscle, SR a "slow" release of calcium has also been observed at compotassium concentrations above 8 mmol/liter but still (363 below the contracture threshold. Elevation a "slow" release of calcium has also been observed at opotassium concentrations above 8 mmol/liter but still below the contracture threshold. Elevations of $[K^+]$, cause an increase in oxygen consumption (155) and in heat potassium concentrations above 8 mmol/liter but still (36;
below the contracture threshold. Elevations of $[K^+]$, cou
cause an increase in oxygen consumption (155) and in mes
heat production (358). These effects have been below the contracture threshold. Elevations of $[K^+]$, couplind cause an increase in oxygen consumption (155) and in messer heat production (358). These effects have been attributed tubular to an enhanced calcium sequestra cause an increase in oxygen consumption (155) and
heat production (358). These effects have been attribut
to an enhanced calcium sequestration secondary to a
augmentation of voltage-dependent calcium release fro
the sarcop heat production (358). These effects have been attributed
to an enhanced calcium sequestration secondary to an
augmentation of voltage-dependent calcium release from
the sarcoplasmic reticulum (293, 31) and a resultant
inc to an enhanced calcium sequestration secondary to an augmentation of voltage-dependent calcium release from the sarcoplasmic reticulum (293, 31) and a resultant increase in the intracellular calcium concentration (357). Fu the sarcoplasmic reticulum (293, 31) and a resultant
increase in the intracellular calcium concentration (357).
Furthermore, these effects were also inhibited by various
divalent cations (388).
Since the coupling mechanism e sarcoplasmic reticulum (293, 31) and a resultant
crease in the intracellular calcium concentration (357).
urthermore, these effects were also inhibited by various
valent cations (388).
Since the coupling mechanism betwee

increase in the intracellular calcium concentration (357).

Furthermore, these effects were also inhibited by various

divalent cations (388).

Since the coupling mechanism between membrane po-

tential and calcium leak fr Furthermore, these effects were also inhibited by various
divalent cations (388).
Since the coupling mechanism between membrane po-
tential and calcium leak from intracellular stores seems
to be as well developed in skelet divalent cations (388).

Since the coupling mechanism between membrane p

tential and calcium leak from intracellular stores seer

to be as well developed in skeletal as in mammalii

cardiac muscle, one is inclined to assu Since the coupling mechanism between membrane po-
tential and calcium leak from intracellular stores seems (IV
to be as well developed in skeletal as in mammalian the
cardiac muscle, one is inclined to assume that this mec tential and calcium leak from intracellular stores see
to be as well developed in skeletal as in mammal
cardiac muscle, one is inclined to assume that this me
anism serves, in both types of muscle, for the ra
release of ca to be as well developed in skeletal as in mammalian the cardiac muscle, one is inclined to assume that this mech-
anism serves, in both types of muscle, for the rapid release of calcium that is triggered by the fast depola

CALCIUM MOBILIZATION AND CARDIAC INOTROPIC MECHANISMS 201
contraction. Test contractions at various intervals be- reconcile with a mechanism other than passive diffusion reconcile with a mechanism other than passive diffusion
through activated calcium release channels of the juncthrough activated reconcile with a mechanism other than passive diffusion
through activated calcium release channels of the junc-
tional SR. The kinetic studies by Ikemoto et al. (180) o the concile with a mechanism other than passive diffusion
reconcile with a mechanism other than passive diffusion
through activated calcium release channels of the junc-
tional SR. The kinetic studies by Ikemoto et al. (1 reconcile with a mechanism other than passive diffusion
through activated calcium release channels of the junc-
tional SR. The kinetic studies by Ikemoto et al. (180) on
Ca²⁺ release (induced by ionic replacement) from i reconcile with a mechanism other than passive diffusion
through activated calcium release channels of the junc-
tional SR. The kinetic studies by Ikemoto et al. (180) on
Ca²⁺ release (induced by ionic replacement) from i tional SR. The kinetic studies by Ikemoto et al. (180) on Ca^{2+} release (induced by ionic replacement) from isolated SR/T-tubule complexes from skeletal muscle suggest that the linkage between sarcolemma and SR is req tional SR. The kinetic studies by Ikemoto et al. (180) on Ca²⁺ release (induced by ionic replacement) from isolated SR/T-tubule complexes from skeletal muscle suggest that the linkage between sarcolemma and SR is require Ca^{2+} release (induced by ionic replacement) from isolated SR/T-tubule complexes from skeletal muscle suggest that the linkage between sarcolemma and SR is required for triggering rapid calcium release, whereas a direct SR/T-tubule complexes from skeletal muscle suggest
that the linkage between sarcolemma and SR is required
for triggering rapid calcium release, whereas a direct
activation of the SR membrane by (released) calcium or
drugs that the linkage between sarcolemma and SR is required
for triggering rapid calcium release, whereas a direct
activation of the SR membrane by (released) calcium or
drugs (caffeine and quercetin) leads to a relatively slow activation of the SR membrane by (released) calcium or drugs (caffeine and quercetin) leads to a relatively slow calcium release. Putative calcium release channels in heavy SR vesicles, derived from the terminal cisternae activation of the SR membrane by (released) calcium or
drugs (caffeine and quercetin) leads to a relatively slow
calcium release. Putative calcium release channels in
heavy SR vesicles, derived from the terminal cisternae
 drugs (caffeine and quercetin) leads to a relatively sl
calcium release. Putative calcium release channels
heavy SR vesicles, derived from the terminal cisterr
of both skeletal (356) and cardiac (334a) muscle, whi
were inc calcium release. Putative calcium release channels
heavy SR vesicles, derived from the terminal cisterr
of both skeletal (356) and cardiac (334a) muscle, whi
were incorporated into planar lipid bilayers and iden
fied on th heavy SR vesicles, derived from the terminal cisternae
of both skeletal (356) and cardiac (334a) muscle, which
were incorporated into planar lipid bilayers and identi-
fied on the basis of their activation by adenine nucle of both skeletal (356) and cardiac (334a) muscle, which
were incorporated into planar lipid bilayers and identi-
fied on the basis of their activation by adenine nucleo-
tides, blockade by ruthenium red, and sensitivity fo were incorporated into planar lipid bilayers and ider
fied on the basis of their activation by adenine nucl-
tides, blockade by ruthenium red, and sensitivity
divalent cations, have been shown to exhibit a very la
conducta fied on the basis of their activation by adenine nucleotides, blockade by ruthenium red, and sensitivity for divalent cations, have been shown to exhibit a very large conductance. A large conductance is certainly a prerequ tides, blockade by ruthenium red, and sensitivity for divalent cations, have been shown to exhibit a very large conductance. A large conductance is certainly a prerequisite for a calcium channel that can mediate large ion divalent cations, have been shown to exhibit a very large conductance. A large conductance is certainly a prerequisite for a calcium channel that can mediate large ion fluxes on a millisecond time scale. Ryanodine (see se uisite for a calcium channel that can mediate large ion
fluxes on a millisecond time scale. Ryanodine (see section
IV D) was found to act as a specific ligand for the Ca^{2+}
release channels of the junctional SR (130). T fluxes on a millisecond time scale. Ryanodine (see sec IV D) was found to act as a specific ligand for the velease channels of the junctional SR (130). This let the isolation, from skeletal as from cardiac muscle the Ca^{2 IV D) was found to act as a specific ligand for the Ca^{2+} release channels of the junctional SR (130). This led to the isolation, from skeletal as from cardiac muscle, of the Ca^{2+} release channel. It is a high-molecu release channels of the junctional SR (130). This led the isolation, from skeletal as from cardiac muscle, χ the Ca²⁺ release channel. It is a high-molecular-weigh protein whose structure is identical with that of th the isolation, from skeletal as from cardiac muscle, complete the Ca²⁺ release channel. It is a high-molecular-weigh protein whose structure is identical with that of the feed bridging the gap between the sarcolemma and e Ca²⁺ release channel. It is a high-molecular-weigotein whose structure is identical with that of the foreign of the same of same several mechanisms for a volt

rices, blockade by ruthenium red, and sensitivity for divalent cations, have been shown to exhibit a very large conductance. A large conductance is certainly a prerequisite for a calcium channel that can mediate large ion protein whose structure is identical with that of the feet
bridging the gap between the sarcolemma and the junc-
tional sarcoplasmic reticulum (183, 183a, 229a, 229b).
Several mechanisms for a voltage-dependent activa-
tio bridging the gap between the sarcolemma and the junctional sarcoplasmic reticulum (183, 183a, 229a, 229b).
Several mechanisms for a voltage-dependent activation of calcium release in skeletal muscle have been
suggested. Th tional sarcoplasmic reticulum (183, 183a, 229a, 229b).
Several mechanisms for a voltage-dependent activa-
tion of calcium release in skeletal muscle have been
suggested. The main hypotheses are electrical, chemical,
and me Several mechanisms for a voltage-dependent activation of calcium release in skeletal muscle have been suggested. The main hypotheses are electrical, chemical, and mechanical (for reviews, see refs. 368, 251, and 362). Elec tion of calcium release in skeletal muscle have been suggested. The main hypotheses are electrical, chemical, and mechanical (for reviews, see refs. 368, 251, and 362). Electrical coupling was thought to occur by a flow of suggested. The main hypotheses are electrical, chemical, and mechanical (for reviews, see refs. 368, 251, and 362). Electrical coupling was thought to occur by a flow of ionic current from the tubular space through pores (and mechanical (for reviews, see refs. 368, 251, and 362).

Electrical coupling was thought to occur by a flow of

ionic current from the tubular space through pores (pil-

lars) of the bridging structures into the SR, th Electrical coupling was thought to occur by a flow of
ionic current from the tubular space through pores (pil-
lars) of the bridging structures into the SR, thereby
inducing an electrical potential change across the SR
mem hypothesis could not be supported experimentally, since in membrane which would cause calcium release (256). This hypothesis could not be supported experimentally, since evidence for large changes in membrane potential of inducing an electrical potential change across the SR
membrane which would cause calcium release (256). This
hypothesis could not be supported experimentally, since
evidence for large changes in membrane potential of the
S membrane which would cause calcium release (256). This
hypothesis could not be supported experimentally, since
evidence for large changes in membrane potential of the
SR during calcium release was found neither in the ioni hypothesis could not be supported experimentally, sine
evidence for large changes in membrane potential of th
SR during calcium release was found neither in the ion
composition of the SR nor in relevant optical signa
(363, evidence for large changes in membrane potential of the SR during calcium release was found neither in the ionic composition of the SR nor in relevant optical signals (363, 295, 211, 19). A chemical excitation-contraction SR during calcium release was found neither in the ionic composition of the SR nor in relevant optical signals (363, 295, 211, 19). A chemical excitation-contraction coupling could possibly be accomplished by a diffusible composition of the SR nor in relevant optical signals (363, 295, 211, 19). A chemical excitation-contraction coupling could possibly be accomplished by a diffusible messenger substance which enters the fiber through the t (363, 295, 211, 19). A chemical excitation-contraction
coupling could possibly be accomplished by a diffusible
messenger substance which enters the fiber through the
tubular membrane (or is released by the membrane) and
a coupling could possibly be accomplished by a diffusible
messenger substance which enters the fiber through the
tubular membrane (or is released by the membrane) and
activates the SR. Ca^{2+} has long been considered as a
 messenger substance which enters the fiber through the tubular membrane (or is released by the membrane) and activates the SR. Ca^{2+} has long been considered as *i* likely candidate for such messenger substance (for re tubular membrane (or is released by the membrane) and
activates the SR. Ca^{2+} has long been considered as a
likely candidate for such messenger substance (for re-
views, see refs. 30 and 135). According to this hypothes activates the SR. Ca^{2+} has long been considered as a likely candidate for such messenger substance (for reviews, see refs. 30 and 135). According to this hypothesis, small quantities of Ca^{2+} entering during depolari likely candidate for such messenger substance (for reviews, see refs. 30 and 135). According to this hypothesis, small quantities of Ca^{2+} entering during depolarization should trigger the release from the SR of the muc views, see refs. 30 and 135). According to this hypothesis,
small quantities of Ca^{2+} entering during depolarization
should trigger the release from the SR of the much larger
quantity of Ca^{2+} required for contraction should trigger the release from the SR of the much larger
quantity of Ca^{2+} required for contraction $(Ca^{2+}$ -induced
release of Ca^{2+}). As discussed in the previous sections
(IV A to IV B 6), it was found to be rathe should trigger the release from the SR of the much large quantity of Ca^{2+} required for contraction $(Ca^{2+}$ -induce release of Ca^{2+}). As discussed in the previous section (IV A to IV B 6), it was found to be rather u quantity of Ca^{2+} required for contraction $(Ca^{2+}$ -induced release of Ca^{2+}). As discussed in the previous sections (IV A to IV B 6), it was found to be rather unlikely that the normal, depolarization-induced, contra release of Ca^{2+}). As discussed in the previous sections (IV A to IV B 6), it was found to be rather unlikely that the normal, depolarization-induced, contraction of mammalian cardiac muscle results from Ca^{2+} -induced (IV A to IV B 6), it was found to be rather unlikely that the normal, depolarization-induced, contraction of mammalian cardiac muscle results from Ca^{2+} -induced Ca^{2+} release. In skeletal muscle, the hypothesis appears

REITER
release signals have even been recorded from fibers which dif
had been bathed in 1 mmol/liter of EGTA for 2 days, a eve REITER

release signals have even been recorded from fibers which diff

had been bathed in 1 mmol/liter of EGTA for 2 days, a eve

treatment which certainly should have caused them to the REITER

release signals have even been recorded from fibers which different

had been bathed in 1 mmol/liter of EGTA for 2 days, a even

treatment which certainly should have caused them to the

lose their tubular calcium release signals have even been recorded from fibers w.
had been bathed in 1 mmol/liter of EGTA for 2 day
treatment which certainly should have caused ther
lose their tubular calcium content (265). The experint
al analysis release signals have even been recorded from fibers which different cells including skinned muscles fibers (see, how-
had been bathed in 1 mmol/liter of EGTA for 2 days, a ever, ref. 274) led to the suggestion that $\text{InsP$ had been bathed in 1 mmol/liter of EGTA for 2 days, a even
treatment which certainly should have caused them to the
lose their tubular calcium content (265). The experimentractal
analysis of the influence of extracellular treatment which certainly should have caused them
lose their tubular calcium content (265). The experimental analysis of the influence of extracellular Ca^{2+}
excitation-contraction coupling in skeletal muscle led
the vi lose their tubular calcium content (265). The experimental analysis of the influence of extracellular Ca^{2+} on excitation-contraction coupling in skeletal muscle led to the view that bound calcium is a requisite for the tal analysis of the influence of extracellular Ca^{2+} on Insercitation-contraction coupling in skeletal muscle led to is used the view that bound calcium is a requisite for the voltage-
sensing and force-controlling syst excitation-contraction coupling in skeletal muscle led to
the view that bound calcium is a requisite for the voltage-
sensing and force-controlling system residing in the tu-
bular membrane (247, 147, 246, 63, 61). Nickel the view that bound calcium is a requisite for the voltage-
sensing and force-controlling system residing in the tu-
bular membrane (247, 147, 246, 63, 61). Nickel ions can
apparently substitute for Ca^{2+} in this functi sensing and force-controlling system residing in the tu-
bular membrane $(247, 147, 246, 63, 61)$. Nickel ions can
apparently substitute for Ca^{2+} in this function $(389, 68,$
31). The removal of external Ca caused an a bular membrane $(247, 147, 246, 63, 61)$. Nickel ions c
apparently substitute for Ca^{2+} in this function $(389, 631)$. The removal of external Ca caused an accelerati
of force inactivation in skeletal muscle leading to 31). The removal of external Ca caused an acceleration of force inactivation in skeletal muscle leading to a shift of the steady-state potential dependence of force inactivation to more negative potentials $(247, 147, 246$ 31). The removal of external Ca caused an acceleration
of force inactivation in skeletal muscle leading to a shift
of the steady-state potential dependence of force inacti-
vation to more negative potentials $(247, 147, 2$ of force inactivation in skeletal muscle leading to a shift
of the steady-state potential dependence of force inacti-
vation to more negative potentials $(247, 147, 246)$. Sim-
ilar potential shifts were observed of the i of the steady-state potential dependence of force inactivation to more negative potentials $(247, 147, 246)$. Similar potential shifts were observed of the inactivation in curves of Ca^{2+} release (63) and intramembrane vation to more negative potentials $(247, 147, 246)$. Sim-
ilar potential shifts were observed of the inactivation inj
curves of Ca^{2+} release (63) and intramembrane charge ere
movement (61). Lüttgau and coworkers (246) ilar potential shifts were observed of the inactiva
curves of Ca^{2+} release (63) and intramembrane ch
movement (61). Lüttgau and coworkers (246) explai
the influence of Ca^{2+} on the potential dependence of
inactivatio curves of Ca^{2+} release (63) and intramembrane charge
movement (61). Lüttgau and coworkers (246) explained
the influence of Ca^{2+} on the potential dependence of the
inactivation curve by assuming a potential-dependent movement (61). Lüttgau and coworkers (246) explained aft
the influence of Ca²⁺ on the potential dependence of the
inactivation curve by assuming a potential-dependent bin
binding of Ca²⁺ to the potential sensor of for the influence of Ca²⁺ on the potential dependence of the matrixation curve by assuming a potential-dependent binding of Ca²⁺ to the potential sensor of force activation skin the T-tubular membrane, with a low affinity inactivation curve by assuming a potential-dependent
binding of Ca^{2+} to the potential sensor of force activation
in the T-tubular membrane, with a low affinity in the
depolarized inactivated state. A dissociation of Ca binding of Ca^{2+} to the potential sensor of force activation
in the T-tubular membrane, with a low affinity in the
depolarized inactivated state. A dissociation of Ca^{2+} is
assumed to turn the system into a secondary in the T-tubular membrane, with a low affinity in the previously by several investigators were explained as
depolarized inactivated state. A dissociation of Ca^{2+} is being induced by the depolarization of sealed-off T-
 depolarized inactivated state. A dissociation of Ca^{2+} is b
assumed to turn the system into a secondary inactivated the
(paralyzed) state from which it only slowly recovers after lo
repolarization. This model would expl assumed to turn the system into a secondary inactivated (paralyzed) state from which it only slowly recovers after repolarization. This model would explain the failure, in skinned skeletal muscle fibers, to induce Ca^{2+} (paralyzed) state from which it only slowly recovers after log
repolarization. This model would explain the failure, in
skinned skeletal muscle fibers, to induce Ca^{2+} release
from the SR by depolarization of sealed-off repolarization. This model would explain the failure, in skinned skeletal muscle fibers, to induce Ca^{2+} release from the SR by depolarization of sealed-off transverse tubules after application of EGTA to their cytosoli skinned skeletal muscle fibers, to induce Ca^{2+} rele
from the SR by depolarization of sealed-off transve
tubules after application of EGTA to their cytosolic (401) . Since the membrane potential of these tubu
and, ther from the SR by depolarization of sealed-off transverse a
tubules after application of EGTA to their cytosolic side
(401). Since the membrane potential of these tubules than
and, therefore, their binding affinity for Ca²⁺ tubules after application of EGTA to their cytosolic side (401). Since the membrane potential of these tubules and, therefore, their binding affinity for Ca^{2+} are presumably relatively low, it seems to be feasible that and, therefore, their binding affinity for Ca^{2+} are presum-
ably relatively low, it seems to be feasible that chelation
of dissociating Ca^{2+} by EGTA renders the potential
lisensor into a paralyzed state.
As to the n

ably relatively low, it seems to be feasible that chelation of dissociating Ca^{2+} by EGTA renders the potential lisensor into a paralyzed state.
As to the nature of the voltage sensors, the likelihood crists that they a of dissociating Ca^{2+} by EGTA renders the potential
sensor into a paralyzed state.
As to the nature of the voltage sensors, the likelihood
exists that they are identical with the high-affinity 1,4-
dihydropyridine bindi sensor into a paralyzed state.

As to the nature of the voltage sensors, the likelihood

exists that they are identical with the high-affinity 1,4-

dihydropyridine binding sites (332a) which are abundant

in skeletal tran As to the nature of the voltage sensors, the likelihood clo
exists that they are identical with the high-affinity $1,4$ -
dihydropyridine binding sites (332a) which are abundant res
in skeletal transverse tubular membranes exists that they are identical with the high-affinity 1,4-
dihydropyridine binding sites (332a) which are abundant res
in skeletal transverse tubular membranes (47a). Al-
ca though most binding sites for the dihydropyridin dihydropyridine binding sites (332a) which are abundant
in skeletal transverse tubular membranes (47a). Al-
though most binding sites for the dihydropyridines are
not functional Ca channels (343a), it is possible that the
 in skeletal transverse tubular membranes $(47a)$. Alcough most binding sites for the dihydropyridines are repond functional Ca channels $(343a)$, it is possible that the ible high-affinity receptors are channel-like prote though most binding sites for the dihydropyridines are not functional Ca channels (343a), it is possible that the high-affinity receptors are channel-like proteins that perform the voltage-sensing function and are coupled not functional Ca channels (343a), it is possible that the ible
high-affinity receptors are channel-like proteins that that
perform the voltage-sensing function and are coupled to spee
the calcium release channel by an unk high-affinity receptors are channel-like proteins that the perform the voltage-sensing function and are coupled to spite calcium release channel by an unknown mechanism. from the intact cell, the high-affinity binding depe perform the voltage-sensing function and are coupled to
the calcium release channel by an unknown mechanism.
In the intact cell, the high-affinity binding depends on
depolarization; negative potentials inhibit the binding
 the calcium release channel by an unknown mechanism. frog s
In the intact cell, the high-affinity binding depends on pende
depolarization; negative potentials inhibit the binding tentia
(343a). Dihydropyridines in nanomola In the intact cell, the high-affinity binding depends on
depolarization; negative potentials inhibit the binding
(343a). Dihydropyridines in nanomolar concentrations
were found to inhibit charge movements and SR calcium
re depolarization; negative potentials inhibit the bindin
(343a). Dihydropyridines in nanomolar concentration
were found to inhibit charge movements and SR calciur
release in parallel (332a). The effect has a dependenc
on mem were found to inhibit charge movements and SR calcium
release in parallel (332a). The effect has a dependence
on membrane voltage analogous to that of specific bind-
ing of dihydropyridines. Since the blockade of sarcolemwere found to inhibit charge movements and SR calcium
release in parallel (332a). The effect has a dependence
on membrane voltage analogous to that of specific bind-
ing of dihydropyridines. Since the blockade of sarcolem release in parallel $(332a)$. The effect has a dependence mon membrane voltage analogous to that of specific bind-
ing of dihydropyridines. Since the blockade of sarcolem-S
mal calcium channels requires more than 100-fold on membrane voltage analogous to that of specific bind-
ing of dihydropyridines. Since the blockade of sarcolem-
mal calcium channels requires more than 100-fold higher
concentrations (see section III A), Ca^{2+} currents ing of dihydropyridines. Since the blockade of sarcolem
mal calcium channels requires more than 100-fold highe
concentrations (see section III A), Ca^{2+} currents through
the sarcolemma remain uninhibited at dihydropyrid mal calcium channels
concentrations (see set
the sarcolemma rema
concentrations high
affinity sites (343a).
The discovery that ncentrations (see section III A), Ca^{2+} currents through
e sarcolemma remain uninhibited at dihydropyridine
ncentrations high enough to bind nearly all high-
finity sites (343a).
The discovery that inositol 1,4,5-trisph the sarcolemma remain uninhibited at dihydropyridine heconcentrations high enough to bind nearly all high-
affinity sites (343a). com
The discovery that inositol 1,4,5-trisphosphate (InsP₃) sm
mobilizes Ca^{2+} from the

ER
different cells including skinned muscles fibers (see, how
ever, ref. 274) led to the suggestion that InsP_3 may b ereture the simulation of the suggestion that InsP₃ may be ever, ref. 274) led to the suggestion that InsP₃ may be the postulated chemical messenger for excitation-con-ER
different cells including skinned muscles fibers (see,
ever, ref. 274) led to the suggestion that $InsP_3$ m
the postulated chemical messenger for excitation
traction coupling (400, 395). Interestingly, the abil different cells including skinned muscles fibers (see, how-
ever, ref. 274) led to the suggestion that InsP_3 may be
the postulated chemical messenger for excitation-con-
traction coupling (400, 395). Interestingly, th different cells including skinned muscles fibers (see, how-
ever, ref. 274) led to the suggestion that InsP_3 may be
the postulated chemical messenger for excitation-con-
traction coupling (400, 395). Interestingly, th ever, ref. 274) led to the suggestion that InsP_3 may l
the postulated chemical messenger for excitation-co
traction coupling (400, 395). Interestingly, the ability
InsP₃ to release calcium from the endoplasmic retic the postulated chemical messenger for excitation-contraction coupling $(400, 395)$. Interestingly, the ability InsP_3 to release calcium from the endoplasmic reticulur is unaffected by ruthenium red (25) , a very pot traction coupling (400, 395). Interestingly, the ability of InsP_3 to release calcium from the endoplasmic reticulum is unaffected by ruthenium red (25), a very potent inhibitor of the Ca^{2+} release channels loca InsP₃ to release calcium from the endoplasmic reticulum
is unaffected by ruthenium red (25), a very potent inhib
itor of the Ca²⁺ release channels localized in the junc
tional SR of both skeletal and cardiac muscle (1 is unaffected by ruthenium red (25), a very potent inhib-
itor of the Ca²⁺ release channels localized in the junc-
tional SR of both skeletal and cardiac muscle (130, 307).
The hypothesis was tested by injection into in itor of the Ca²⁺ release channels localized in the junctional SR of both skeletal and cardiac muscle (130, 307).
The hypothesis was tested by injection into intact skeletal muscle fibers of either InsP_3 (36, 152) or tional SR of both skeletal and cardiac muscle (130, 307).
The hypothesis was tested by injection into intact skeletal muscle fibers of either InsP_3 (36, 152) or heparin, an inhibitor of InsP_3 -induced Ca^{2+} The hypothesis was tested by injection into intact skel-
etal muscle fibers of either InsP_3 (36, 152) or heparin, an
inhibitor of InsP_3 -induced Ca^{2+} release in smooth muscle
and nonmuscle cells (301). No co etal muscle fibers of either InsP_3 (36, 152) or heparin, an inhibitor of InsP_3 -induced Ca^{2+} release in smooth muscle and nonmuscle cells (301). No contraction was ever observed in an intact fiber, and there inhibitor of InsP₃-induced Ca²⁺ release in smooth mus
and nonmuscle cells (301). No contraction was e
observed in an intact fiber, and there was no rise
aequorin luminescence after injection of InsP₃, when
injection and nonmuscle cells (301). No contraction was ever
observed in an intact fiber, and there was no rise in
aequorin luminescence after injection of $InsP_3$, whereas
injections of $CaCl_2$ or caffeine produced obvious sarcom-
 observed in an intact fiber, and there was no rise in a
equorin luminescence after injection of $InsP_3$, whereas
injections of $CaCl_2$ or caffeine produced obvious sarcom-
ere shortening. High concentrations of heparin did aequorin luminescence after injection of InsP₃, whereas
injections of CaCl₂ or caffeine produced obvious sarcom-
ere shortening. High concentrations of heparin did not
affect Ca²⁺ release elicited by the normal acti injections of CaCl₂ or caffeine produced obvious sarcom-
ere shortening. High concentrations of heparin did not
affect Ca²⁺ release elicited by the normal action potential
mechanism as monitored by both fura-2 and an affect Ca^{2+} release elicited by the normal action potential mechanism as monitored by both fura-2 and an intrinsic
birefringence signal. InsP₃-induced releases of Ca^{2+} in
skinned skeletal muscle fibers which had b affect Ca^{2+} release elicited by the normal action potential mechanism as monitored by both fura-2 and an intrinsic birefringence signal. InsP₃-induced releases of Ca^{2+} in skinned skeletal muscle fibers which had b mechanism as monitored by both fura-2 and an intrinsic
birefringence signal. Ins P_3 -induced releases of Ca^{2+} in
skinned skeletal muscle fibers which had been reported
previously by several investigators were explaine birefringence signal. Ins P_3 -induced releases of Ca^{2+}
skinned skeletal muscle fibers which had been report
previously by several investigators were explained
being induced by the depolarization of sealed-off
tubules skinned skeletal muscle fibers which had been report
previously by several investigators were explained
being induced by the depolarization of sealed-off
tubules (152). The results argue against a major phys
logical role previously by several investigators were ex
being induced by the depolarization of sea
tubules (152). The results argue against a ma
logical role of InsP_3 as a chemical messenger
tion-contraction coupling in skeletal tubules (152). The results argue against a major physio-
logical role of InsP_3 as a chemical messenger of excita-
tion-contraction coupling in skeletal muscle.
In the so-called mechanical hypothesis of Schneider
and C

In the so-called mechanical hypothesis of Schneider logical role of InsP_3 as a chemical messenger of excitation-contraction coupling in skeletal muscle.
In the so-called mechanical hypothesis of Schneider
and Chandler (341), a voltage-dependent movement of
fixed electr tion-contraction coupling in skeletal muscle.
In the so-called mechanical hypothesis of Schneider
and Chandler (341), a voltage-dependent movement of
fixed electrical charges in the surface membrane provides
the means by w In the so-called mechanical hypothesis of Schneider
and Chandler (341), a voltage-dependent movement of
fixed electrical charges in the surface membrane provides
the means by which the potential across the wall of the
tubu and Chandler (341), a voltage-dependent movement of
fixed electrical charges in the surface membrane provides
the means by which the potential across the wall of the
tubular system is sensed by the junctional attachments
o fixed electrical charges in the surface membrane provides
the means by which the potential across the wall of the
tubular system is sensed by the junctional attachments
of the SR. In the extended model (78), the charge is
 the means by which the potential across the wall of the tubular system is sensed by the junctional attachments of the SR. In the extended model (78), the charge is linked by a molecular entity to a calcium release channel tubular system is sensed by the junctional attachmen
of the SR. In the extended model (78), the charge
linked by a molecular entity to a calcium release chann
of the SR which thereby is mechanically opened (
closed, depend of the SR. In the extended model (78) , the charge is linked by a molecular entity to a calcium release channe of the SR which thereby is mechanically opened of closed, depending on the potential of the tubular membrane. linked by a molecular entity to a calcium release channel
of the SR which thereby is mechanically opened or
closed, depending on the potential of the tubular mem-
brane. The model is consistent with the physiological
resu of the SR which thereby is mechanically opened or closed, depending on the potential of the tubular membrane. The model is consistent with the physiological results that (a) depolarization of the tubular membrane can inc closed, depending on the potential of the tubular me
brane. The model is consistent with the physiolog
results that (a) depolarization of the tubular membra
can increase Ca^{2+} flux across the SR membrane, and
repolariz brane. The model is consistent with the physiological
results that (*a*) depolarization of the tubular membrane
can increase Ca^{2+} flux across the SR membrane, and (*b*)
repolarization can rapidly shut off Ca^{2+} relea can increase Ca²⁺ flux across the SR membrane, and (b) repolarization can rapidly shut off Ca²⁺ release. Compatible with the charge movement concept is the finding can increase Ca^{2+} flux across the SR membrane, and (b)
repolarization can rapidly shut off Ca^{2+} release. Compat-
ible with the charge movement concept is the finding
that the perchlorate anion at low concentrations repolarization can rapidly shut off Ca^{2+} release. Compatible with the charge movement concept is the finding that the perchlorate anion at low concentrations rather specifically improves excitation-contraction coupling ible with the charge movement concept is the finding
that the perchlorate anion at low concentrations rather
specifically improves excitation-contraction coupling of
frog skeletal muscle fibers by shifting the voltage de-
 specifically improves excitation-contraction coupling of frog skeletal muscle fibers by shifting the voltage dependence of force activation towards more negative potentials parallel with the voltage dependence of intracelspecifically improves excitation-contraction coupling of
frog skeletal muscle fibers by shifting the voltage de-
pendence of force activation towards more negative po-
tentials parallel with the voltage dependence of intra frog skeletal muscle fibers by shifting the voltage d
pendence of force activation towards more negative p
tentials parallel with the voltage dependence of intract
lular charge movement (145, 246a). Likewise, the line
rela pendence of force activation towards more negative potentials parallel with the voltage dependence of intracel-
lular charge movement (145, 246a). Likewise, the linear
relation of the calcium release rate to the charge mov bentials paralier with the voltage dependence of intracen-

lular charge movement (145, 246a). Likewise, the linear

relation of the calcium release rate to the charge move-

ment, which was observed in several investigati relation of the calcium release rate to the charge move-
ment, which was observed in several investigations (311a,
264, 332a, 61), points to a tight control of activation of
SR calcium release by intramembrane charge movem relation of the calcium release rate to the charge move-
ment, which was observed in several investigations (311a,
264, 332a, 61), points to a tight control of activation of
SR calcium release by intramembrane charge movem ment, which was observed in several investigations (311a, 264, 332a, 61), points to a tight control of activation of SR calcium release by intramembrane charge movement.
The hypothesis would be in accordance also with the 264, 332a, 61), points to a tight control of activation of SR calcium release by intramembrane charge movement.
The hypothesis would be in accordance also with the potential dependence, in both skeletal and mammalian heart SR calcium release by intramembrane charge movement.
The hypothesis would be in accordance also with the
potential dependence, in both skeletal and mammalian
heart muscle, of the calcium leakage from the junctional
SR at p The hypothesis would be in accordance also with the potential dependence, in both skeletal and mammalian heart muscle, of the calcium leakage from the junctional SR at potentials more negative than the threshold for contr potential dependence, in both skeletal and mammalian
heart muscle, of the calcium leakage from the junctional
SR at potentials more negative than the threshold for
contraction, where the rate of release is apparently
smal heart muscle, of the calcium leakage from the junctional SR at potentials more negative than the threshold for contraction, where the rate of release is apparently smaller than the rate of Ca^{2+} sequestration (see above

spet

 $\overline{\mathbb{O}}$

CALCIUM MOBILIZATION AND CAF
has been found to be identical with the foot structure
between the junctional SR and the tubular membrane
(see following section IV D), the control of the opening CALCIUM MOBILIZATION AND CARD
has been found to be identical with the foot structure
between the junctional SR and the tubular membrane
39
state following section IV D), the control of the opening
state of the calcium rele has been found to be identical with the foot structue
between the junctional SR and the tubular membrar
(see following section IV D), the control of the openir
state of the calcium release channel by a conformation
change has been found to be identical with the foot structure loss
between the junctional SR and the tubular membrane 399
(see following section IV D), the control of the opening the
state of the calcium release channel by a con between the junctional SR and the tubular membrain (see following section IV D), the control of the opening state of the calcium release channel by a conformation change of a sarcolemmal membrane protein may not as remote (see following see
state of the calciu
change of a sarce
as remote as orig
dler et al. (78). *Change of a sarces*
D. Ryanodine
D. Ryanodine
The alkaloid

a result of its leakiness, lost its capability
a result of its leakiness, lost its capability
calcium load for the usual period of time.
te, as measured by the rate of loss of the eat,
it, is not diminished by Mg^{2+} (3 duer et al. (78).
D. Ryanodine
The alkaloid ryanodine has been found to alter the
function of skeletal and cardiac muscle in nanomolar
concentrations (187). This potent drug specifically inhib-D. Ryanodine
The alkaloid ryanodine has been found to alter the
function of skeletal and cardiac muscle in nanomolo
concentrations (187). This potent drug specifically inhibits
the early contraction component of cardiac mu The alkaloid ryanodine has been found to alter the my
function of skeletal and cardiac muscle in nanomolar can
concentrations (187). This potent drug specifically inhib-
its the early contraction component of cardiac muscl function of skeletal and cardiac muscle in nanomolar concentrations (187). This potent drug specifically inhibits the early contraction component of cardiac muscle (fig. 6), an effect that resembles that of increasing the its the early contraction component of cardiac muscle (fig. 6), an effect that resembles that of increasing the extracellular potassium concentration to 16 mmol/liter (fig. 5). This effect is documented in the contraction its the early contraction component of cardiac muscle (fig. 6), an effect that resembles that of increasing the from the extracellular potassium concentration to 16 mmol/liter rest of (fig. 5). This effect is documented i (fig. 6), an effect that resembles that of increasing the $\frac{1}{10}$ restracellular potassium concentration to 16 mmol/liter (fig. 5). This effect is documented in the contraction retracings of a number of authors, althou extracellular potassium concentration to 16 mmol/liter (fig. 5). This effect is documented in the contraction tracings of a number of authors, although some of them did not especially mention it or described the effect as (fig. 5). This effect is documented in the contraction read-
tracings of a number of authors, although some of them showed did not especially mention it or described the effect as and
not being substantial (305, 394, 303, tracings of a number of authors, although some of them
did not especially mention it or described the effect as
an
not being substantial $(305, 394, 303, 167, 377, 375, 207,$ dis
 $268, 416, 26, 422, 248$). The effect has include increase in the extended in the view that, in mammalian cardiac different with the view that, in mammalian cardiac muscle, calcium release from the SR is indispensable for not being substantial $(305, 394, 303, 167, 377, 375, 207, 0268, 416, 26, 422, 248)$. The effect has been ascribed to a checrease in the extent of SR calcium release (374) which is consistent with the view that, in mamm 268, 416, 26, 422, 248). The effect has been ascribed to a decrease in the extent of SR calcium release (374) which is consistent with the view that, in mammalian cardiac muscle, calcium release from the SR is indispensabl decrease in the extent of SR calcium release (374) which state consistent with the view that, in mammalian cardiac frequencies. The muscle, calcium release from the SR is indispensable for van early contraction component. is consistent with the view that, in mammalian cardiac
muscle, calcium release from the SR is indispensable for
an early contraction component. A decrease of SR cal-
cium release might, in principle, be achieved by either muscle, calcium release from the SR is indispensable for ventricular muscle $(355, 139, 149, 162, 160, 367)$. That
an early contraction component. A decrease of SR cal-
cium leak from the SR results in a significant
cium an early contraction component. A decrease of SR calcium release might, in principle, be achieved by either of
two opposing mechanisms—by inhibition of calcium re-
lease from a filled store or by interference with the
clos cium release might, in principle, be achieved by either of two opposing mechanisms—by inhibition of calcium release from a filled store or by interference with the closing of the calcium release channels in the junctional two opposing mechanisms—by inhibition of calcium re-
lease from a filled store or by interference with the
closing of the calcium release channels in the junctional (3
SR. The latter would prevent the accumulation of callease from a filled store or by interference with the closing of the calcium release channels in the junctional SR. The latter would prevent the accumulation of calcium, so that there would be no calcium in the release sto closing of the calcium release channels in the junctional SR. The latter would prevent the accumulation of calcium, so that there would be no calcium in the release
store to be released. That the latter and not the former
 cium, so that there would be no calcium in the release rat heart (178) .
store to be released. That the latter and not the former Calcium efflux from a heavy sarcotubular fraction of
mechanism is responsible for the loss cium, so that there would be no calcium in the release
store to be released. That the latter and not the former
mechanism is responsible for the loss of the early con-
traction component is evident from its dependence on
c store to be released. That the latter and not the former mechanism is responsible for the loss of the early contraction component is evident from its dependence on contraction frequency. The early component returns im-
med mechanism is responsible for the loss of the early con-
traction component is evident from its dependence on
contraction frequency. The early component returns im-
calcium release from a refilled
(fig. 6). This indicates t contraction frequency. The early component returns im-
mediately with a reduction of the stimulation interval
in red, an inhibitor of the calcium release channel, can be
(fig. 6). This indicates that calcium release from contraction frequency. The early component returns im-
mediately with a reduction of the stimulation interval
(fig. 6). This indicates that calcium release from a refilled bloc
store of the SR is not impaired by ryanodine; mediately with a reduction of the stimulation interval red (fig. 6). This indicates that calcium release from a refilled blestore of the SR is not impaired by ryanodine; rather the induction, as a result of its leakiness, store, as a result of its leakiness, lost its capability to in the "open state," so that the terminal cisternae remain
keep the calcium load for the usual period of time. The leaky to calcium (130). The inhibition constan store of the SR is not impaired by ryanodine; rather the store, as a result of its leakiness, lost its capability to keep the calcium load for the usual period of time. The leakage rate, as measured by the rate of loss of store, as a result of its leakiness, lost its capability to keep the calcium load for the usual period of time. The leakage rate, as measured by the rate of loss of the early component, is not diminished by Mg^{2+} (397) a result of its leakiness, lost is
a result of its leakiness, lost is
alcium load for the usual peri
te, as measured by the rate of
t, is not diminished by Mg²⁺ (
a the effect of Mg²⁺ on the pot

1 **nmot/I** Ryanodine

FIG. 6. Frequency-dependent effect of ryanodine on the early con-
traction component. Guinea pig papillary muscle in the presence of 3 traction component. Guinea pig papillary muscle in the early contraction component. Guinea pig papillary muscle in the presence of 3 mmol/liter of norepinephrine. Stimulation frequency, 0.2 Hz; test con-
traction after an FIG. 6. Frequency-dependent effect of ryanodine on the early contraction component. Guinea pig papillary muscle in the presence of 3 μ mol/liter of norepinephrine. Stimulation frequency, 0.2 Hz; test contraction after an

as remote as originally suggested in the model of Chan-

to 12.4 mmol/liter intensified the response to ryanodine,

thas been shown in suspensions of single rat cardiac

The alkaloid ryanodine has been found to alter the
 EXECT INCOURTED IN CONSIDER THE CONSIDER SOLUTION OF SURFERI (See section IV C and ref.

1999) and is clear evidence that ryanodine does not affect

the sarcolemmal voltage sensor but acts intracellularly EUIAC INOTROPIC MECHANISMS 203

loss of the early component (see section IV C and ref.

399) and is clear evidence that ryanodine does not affect

the sarcolemmal voltage sensor but acts intracellularly

at the junctional it was observed in early component (see section IV C and Tel.
399) and is clear evidence that ryanodine does not affect
the sarcolemmal voltage sensor but acts intracellularly
at the junctional SR. In accordance with these 399) and is clear evidence that ryanodine does not affect
the sarcolemmal voltage sensor but acts intracellularly
at the junctional SR. In accordance with these findings,
it was observed in early experiments on frog skelet the satotenmal voltage school out acts intractment
at the junctional SR. In accordance with these finding
it was observed in early experiments on frog skeleta
muscle (45) that an increase in potassium concentratio
to 12.4 it was observed in early experiments on frog skeletal to 12.4 mmol/liter intensified the response to ryanodine, muscle (45) that an increase in potassium concentration
to 12.4 mmol/liter intensified the response to ryanodine,
an effect which was antagonized by magnesium ions. And
it has been shown in suspensions of single rat cardi to 12.4 mmol/liter intensified the response to ryanodine,
an effect which was antagonized by magnesium ions. And
it has been shown in suspensions of single rat cardiac
myocytes by the fluorescent dye, quin-2, that ryanodi an enect which was antagonized by magnesiam fons. This it has been shown in suspensions of single rat cardiac myocytes by the fluorescent dye, quin-2, that ryanodine causes a slow discharge of Ca^{2+} from the SR into the

myocytes by the nuorescent tye, quin-2, that ryanodine
causes a slow discharge of Ca^{2+} from the SR into the
myoplasmic space (153).
The ryanodine-induced increase in calcium leakage
from the SR leads to an acceleration The ryanodine-induced increase in calcium leakage
from the SR leads to an acceleration of the decay during
rest of ventricular contractility which, accordingly,
reaches its rested state much earlier than normal as myoplasmic space (153).
The ryanodine-induced increase in calcium leakage
from the SR leads to an acceleration of the decay during
rest of ventricular contractility which, accordingly,
reaches its rested state much earlier The ryanodine-induced increase in calcium leakage
from the SR leads to an acceleration of the decay during
rest of ventricular contractility which, accordingly,
reaches its rested state much earlier than normal as
shown fo from the SR leads to an acceleration of the decay during
rest of ventricular contractility which, accordingly,
reaches its rested state much earlier than normal as
shown for papillary muscles of the rat (376) , rabbit $($ rest of ventricular contracting which, accordingly,
reaches its rested state much earlier than normal as
shown for papillary muscles of the rat (376), rabbit (373),
and ferret (249). In atrial muscle, which is normally
di shown for papinary muscles of the rat (570), rabbit (570), and ferret (249). In atrial muscle, which is normally distinguished by a strong rested state contraction, low concentrations of ryanodine selectively reduce the s distinguished by a strong rested state contraction, low concentrations of ryanodine selectively reduce the strength of contraction at low frequencies, turning the frequency-force relationship into one resembling that of ve concentrations of ryanodine selectively reduce the strength of contraction at low frequencies, turning the frequency-force relationship into one resembling that of ventricular muscle (355, 139, 149, 162, 160, 367). That th strength of contraction at low frequencies, turning the
frequency-force relationship into one resembling that of
ventricular muscle (355, 139, 149, 162, 160, 367). That
the calcium leak from the SR results in a significant frequency-force relationship into one resembling that of ventricular muscle $(355, 139, 149, 162, 160, 367)$. That the calcium leak from the SR results in a significant increase in calcium efflux from the muscle has been ventricular muscle (355, 139, 149, 162, 160, 367). That
the calcium leak from the SR results in a significant
increase in calcium efflux from the muscle has been
observed in skeletal (29, 150) and smooth muscle (179)
and i the calcium leak from the SR results in a significant
increase in calcium efflux from the muscle has been
observed in skeletal (29, 150) and smooth muscle (179)
and in ventricular muscle of the dog (283) and rabbit
(27), a increase in calcium efflux from the muscle has been
observed in skeletal $(29, 150)$ and smooth muscle (179)
and in ventricular muscle of the dog (283) and rabbit
 (27) , and in guinea-pig atria (136) . Ryanodine cau observed in skele
and in ventricula
(27), and in guine
depletion of a co
rat heart (178).
Calcium efflux d in ventricular muscle of the dog (283) and rabbit 7), and in guinea-pig atria (136). Ryanodine caused the pletion of a contraction-relevant calcium pool in the t heart (178).
Calcium efflux from a heavy sarcotubular frac

(27), and in guinea-pig atria (136). Ryanodine caused the depletion of a contraction-relevant calcium pool in the rat heart (178).

Calcium efflux from a heavy sarcotubular fraction of skeletal muscle was stimulated by ry depletion of a contraction-relevant calcium pool in the
rat heart (178).
Calcium efflux from a heavy sarcotubular fraction of
skeletal muscle was stimulated by ryanodine, but that of
a light fraction was not (121). The enh rat heart (178).

Calcium efflux from a heavy sarcotubular fraction of

skeletal muscle was stimulated by ryanodine, but that of

a light fraction was not (121). The enhancement of the

calcium loading rate of terminal ci Calcium efflux from a heavy sarcotubular fraction of
skeletal muscle was stimulated by ryanodine, but that of
a light fraction was not (121). The enhancement of the
calcium loading rate of terminal cisternae by ruthenium
r skeletal muscle was stimulated by ryanodine, but that of
a light fraction was not (121). The enhancement of the
calcium loading rate of terminal cisternae by ruthenium
red, an inhibitor of the calcium release channel, can a light fraction was not (121). The enhancement of the calcium loading rate of terminal cisternae by ruthenium red, an inhibitor of the calcium release channel, can be blocked by the previous addition of ryanodine. This i calcium loading rate of terminal cisternae by ruthenium
red, an inhibitor of the calcium release channel, can be
blocked by the previous addition of ryanodine. This
indicates that the alkaloid locks the Ca^{2+} release ch red, an inhibitor of the calcium release channel, can be blocked by the previous addition of ryanodine. This indicates that the alkaloid locks the Ca^{2+} release channel in the "open state," so that the terminal cisterna blocked by the previous addition of ryanodine. This
indicates that the alkaloid locks the Ca²⁺ release channel
in the "open state," so that the terminal cisternae remain
leaky to calcium (130). The inhibition constant i in the "open state," so that the terminal cisternae remain leaky to calcium (130). The inhibition constant is in the nanomolar range (20 to 180 nmol/liter; ref. 130) which corresponds to the dissociation constant of $[^{3}H]$ ryano-
dine binding both in skeletal (130) and in cardia leaky to calcium (130). The inhibition constant is in the
nanomolar range (20 to 180 nmol/liter; ref. 130) which
corresponds to the dissociation constant of $[{}^3H]$ ryano-
dine binding both in skeletal (130) and in cardia ranomolar range (20 ω 100 mmol/mer, rer. 150/whicorresponds to the dissociation constant of $[^{3}H]$ rya dine binding both in skeletal (130) and in cardiac must (307). Earlier studies had shown that the uptake of $[^{r}$ ryanodine by rat atria exposed to nanomolar concentrations of the drug correlated with the effects on contraction (85). The binding studies localized the receptors on (307). Earlier studies had shown that the uptake of $[^{3}H]$ ryanodine by rat atria exposed to nanomolar concentrations of the drug correlated with the effects on contraction (85). The binding studies localized the recept ryanodine by rat atria exposed to hanomolar concentra-
tions of the drug correlated with the effects on contrac-
tion (85). The binding studies localized the receptors on
the junctional and not on the longitudinal SR (130) tion (85). The binding studies localized the receptors on
the junctional and not on the longitudinal SR (130). The
ryanodine receptor has been purified from junctional
terminal cisternae of fast skeletal muscle SR and from the junctional and not on the longitudinal SR (130). The ryanodine receptor has been purified from junctional terminal cisternae of fast skeletal muscle SR and from cardiac SR (183, 183a). The affinity for the purified car ryanoame receptor has been purified from junctional
terminal cisternae of fast skeletal muscle SR and from
cardiac receptor was 4- to 5-fold higher than that of
skeletal muscle (183a). Electron microscopy of the puri-
fied cardiac SR (183, 183a). The affinity for the purified cardiac receptor was 4- to 5-fold higher than that of skeletal muscle (183a). Electron microscopy of the purified receptors showed square structures comparable in size skeletal muscle (183a). Electron microscopy of the puri-
fied receptors showed square structures comparable in
size and shape to the "feet" of junctional SR (336),
indicating that ryanodine binds directly to the foot struc size and shape to the "feet" of junctional SR (336).

204
"feet" of about 2. These findings suggest that the ryan
dine receptor and Ca²⁺ release channel represent a fur R

"feet" of about 2. These findings suggest that the ryano

dine receptor and Ca²⁺ release channel represent a func

tional unit, the structural unit being the foot structur REITI

"feet" of about 2. These findings suggest that the ryano-

dine receptor and Ca²⁺ release channel represent a func-

tional unit, the structural unit being the foot structure

which, in situ, is junctionally assoc "feet" of about 2. These findings suggest that the ryandine receptor and Ca^{2+} release channel represent a funtional unit, the structural unit being the foot structure which, in situ, is junctionally associated with the "feet" of about 2. These findings suggest that the ryano-
dine receptor and Ca^{2+} release channel represent a func-
tional unit, the structural unit being the foot structure
which, in situ, is junctionally associated wi dional unit, the structural unit being the foot structure fract
which, in situ, is junctionally associated with the trans-
prep
verse tubules (183). According to some studies (191, 192, long
347, 263, 278), the effect of r which, in situ, is junctionally associated with the trans-
werse tubules (183). According to some studies (191, 192, lon
347, 263, 278), the effect of ryanodine on the calcium unc
channels of isolated junctional SR is rev verse tubules (183). According to some studies (191, 192, 1847, 263, 278), the effect of ryanodine on the calcium unchannels of isolated junctional SR is reversed at ryanophine concentrations four orders of magnitude high 347, 263, 278), the effect of ryanodine on the calcium unchannels of isolated junctional SR is reversed at ryano-
dine concentrations four orders of magnitude higher (100 c:
to 300 μ mol/liter) than the dissociation con channels of isolated junctional SR is reversed at ryano-
dine concentrations four orders of magnitude higher (100 card
to 300 μ mol/liter) than the dissociation constant for strat
specific binding, and there it resemble dine concentrations four orders of magnitude higher (1 to 300 μ mol/liter) than the dissociation constant is
specific binding, and there it resembles the more speci
inhibitory effect of 0.08 to 0.5 μ mol/liter of ruth to 300 μ mol/liter) than the dissociation constans pecific binding, and there it resembles the more sp
inhibitory effect of 0.08 to 0.5 μ mol/liter of ruthered (347, 77, 263, 278). At high concentrations of ry
dine, t specific binding, and there it resembles the more specific
inhibitory effect of 0.08 to 0.5 μ mol/liter of ruthenium
red (347, 77, 263, 278). At high concentrations of ryano-
dine, the paradoxical effect of the drug on the minimal ory effect of 0.08 to 0.3 μ mol/liter of ruthermum
red (347, 77, 263, 278). At high concentrations of ryano-
dine, the paradoxical effect of the drug on ATP-depend-
ent calcium accumulation by isolated SR ve dine, the paradoxical effect of the drug on ATP-dependent calcium accumulation by isolated SR vesicles is determined in part by the experimental environment (235).
Ryanodine was found to be ineffective in cardiac mus-

des from summer to the drug of ATT-dependent calcium accumulation by isolated SR vesicles is de-
termined in part by the experimental environment (235). When Ryanodine was found to be ineffective in cardiac mus-
cles from rammed in part by the experimental environment (255
Ryanodine was found to be ineffective in cardiac muscles from summer toads, from fetal mammalian heart
(human, cat, rabbit), and from newborn kittens an
rabbits. The char be interestive in catual mus-
cles from summer toads, from fetal mammalian hearts r.
(human, cat, rabbit), and from newborn kittens and P
rabbits. The characteristic adult sensitivity to the alka-
cloid appears within a fe the transverse tubular system includes the transverse tubular system (human, cat, rabbit), and from newborn kittens and rabbits. The characteristic adult sensitivity to the alk loid appears within a few days after birth at (numan, cat, rabolt), and from hewborn kittens and
rabbits. The characteristic adult sensitivity to the alk
loid appears within a few days after birth at the san
time as the transverse tubular system (T-system) deve
ops (3 rabolis. The characteristic addit sensitivity to the all
loid appears within a few days after birth at the satime as the transverse tubular system (T-system) de
ops (303). Since, in accompanying studies of the ultructure time as the transverse tubular system (T-system) devel-
time as the transverse tubular system (T-system) devel-
ops (303). Since, in accompanying studies of the ultra-
structure by electron microscopy, an apparent evagina ops (303). Since, in accompanying studies of the ultra-
structure by electron microscopy, an apparent evagina-
tion of the sarcolemma at the level of the Z lines was
found, it was suggested that ryanodine acts in adult ops (303). Since, in accompanying studies of the ultra-
structure by electron microscopy, an apparent evagina-
tion of the sarcolemma at the level of the Z lines was
found, it was suggested that ryanodine acts in adult
mam structure by electron microscopy, an apparent evagire
tion of the sarcolemma at the level of the Z lines w
found, it was suggested that ryanodine acts in ad
mammalian heart muscle by dissociating the T tubui
from the sarco tion of the sarcolemma at the level of the Z lines was
found, it was suggested that ryanodine acts in adult to p
mammalian heart muscle by dissociating the T tubules dine
from the sarcoplasmic reticulum system and thus un the ultrastructure could not be reproduced in a later
from the sarcoplasmic reticulum system and thus uncou-
pling excitation from contraction (304). These effects on
the ultrastructure could not be reproduced in a later
s from the sarcoplasmic reticulum system and thus uncoupling excitation from contraction (304) . These effects on before the ultrastructure could not be reproduced in a later study in which ryanodine-treated muscles were f pung excitation non contraction (504). These enects on
the ultrastructure could not be reproduced in a later
study in which ryanodine-treated muscles were found in
electron micrographs to show normal T tubules and an
unalt electron micrographs to show normal 1 tubules and an
unaltered morphology of the couplings between the sar-
colemma and the SR (167, 148). The previously published
observations were explained as artifacts arising from
musc unattered morphology of the couplings between the sar-
colemma and the SR (167, 148). The previously published
observations were explained as artifacts arising from
muscle contracture during the fixation process (148).
Ne observations were explained as artifacts arising from
muscle contracture during the fixation process (148).
Nevertheless, the specific binding of ryanodine to and
actions on the foot structures of the calcium release
compa muscle contracture during the insation process (146).
Nevertheless, the specific binding of ryanodine to and
actions on the foot structures of the calcium release
compartments associated with the transverse tubules
might f separation. tions on the foot structures of the calcium release
mpartments associated with the transverse tubules
ight facilitate an artificial contracture-induced spatial
paration.
On the basis of experiments with bundles of myofibri

comparations associated with the transverse thouses
might facilitate an artificial contracture-induced spatial
separation.
On the basis of experiments with bundles of myofibrils
containing sarcoplasmic reticulum around eac exparation.

The basis of experiments with bundles of myofibrils

containing sarcoplasmic reticulum around each myofibril

as obtained by microdissection of cardiac cells, it was

postulated that ryanodine, instead of prom For the basis of experiments with bundles of myofibrils

containing sarcoplasmic reticulum around each myofibril

as obtained by microdissection of cardiac cells, it was

postulated that ryanodine, instead of promoting ca On the basis of experiments with bundles of myofibrils
containing sarcoplasmic reticulum around each myofibril
as obtained by microdissection of cardiac cells, it was
postulated that ryanodine, instead of promoting calciu as obtained by microdissection of cardiac cens, it was
postulated that ryanodine, instead of promoting calcium
release, inhibits calcium release from the SR (117). It
was observed in these experiments that ryanodine in
mil traction traces of the bundles). From the SN (117). It is was observed in these experiments that ryanodine in millimolar concentrations did not uniformly influence difference induced calcium release (as judged from content millimolar concentrations did not uniformly influer
caffeine-induced calcium release (as judged from corraction traces of the bundles). From this is was deduced
that ryanodine does not decrease the calcium content
the SR a calculate calculum release (as judged from con-
traction traces of the bundles). From this is was deduced further
the SR and that, therefore, a ryanodine-induced depres-
sion of calcium release from the SR could not be the the SR and that, therefore, a ryanodine-induced depresion of calcium release from the SR could not be tonsequence of an impairment of calcium accumulatify the SR. However, whereas the ryanodine-sensitive calcium channels a the SR and that, therefore, a ryanodine-induced depres-
sion of calcium release from the SR could not be the IBMX
consequence of an impairment of calcium accumulation line)
by the SR. However, whereas the ryanodine-sensit sion of calcium release from the SK could not be the
consequence of an impairment of calcium accumulation
by the SR. However, whereas the ryanodine-sensitive
calcium channels are restricted to the junctional SR es
(130),

ER
found by various authors (270, 370) to reside not only in
the heavy (junctional) but also in the lighter vesicular ER
found by various authors (270, 370) to reside not only in
the heavy (junctional) but also in the lighter vesicular
fractions of the SR. Although the skinned cardiac cell ER
found by various authors (270, 370) to reside not only in
the heavy (junctional) but also in the lighter vesicular
fractions of the SR. Although the skinned cardiac cell
preparations seem to contain a considerable quant found by various authors (270, 370) to reside not only in
the heavy (junctional) but also in the lighter vesicular
fractions of the SR. Although the skinned cardiac cell
preparations seem to contain a considerable quantity lound by various authors $(270, 570)$ to reside not only in
the heavy (junctional) but also in the lighter vesicular
fractions of the SR. Although the skinned cardiac cell
preparations seem to contain a considerable quant the heavy (junctional) but also in the lighter vesicular
fractions of the SR. Although the skinned cardiac cell
preparations seem to contain a considerable quantity of
longitudinal (free) SR surrounding the myofibrils, it fractions of the SR. Although the skinned cardiac cell
preparations seem to contain a considerable quantity of
longitudinal (free) SR surrounding the myofibrils, it is
uncertain how much junctional SR survives the skinning preparations seem to contain a considerable quantity
longitudinal (free) SR surrounding the myofibrils, it
uncertain how much junctional SR survives the skinni
procedure (116, 117). Therefore, whereas the skinn
cardiac cel strational strational SR surveys the skinning
uncertain how much junctional SR survives the skinning
procedure (116, 117). Therefore, whereas the skinned
cardiac cell preparation may be useful for the demon-
stration of ca uncertain now much junctional SN survives the skinning
procedure (116, 117). Therefore, whereas the skinned
cardiac cell preparation may be useful for the demon-
stration of caffeine-induced calcium release from the
longit procedure (110, 117). Therefore, whereas the skill cardiac cell preparation may be useful for the demonstration of caffeine-induced calcium release from the longitudinal parts of the SR, its usefulness for the studiof calc tionable. ration of caffeine-induced calcium release from the ngitudinal parts of the SR, its usefulness for the study calcium release from junctional release stores is ques-
nable.
In view of the highly specific effect of ryanodine

study in which ryanodine-treated muscles were found in
electron micrographs to show normal T tubules and an
unaltered morphology of the couplings between the sar-
colemma and the SR (167, 148). The previously published
ob the calcium release from junctional release stores is questionable.
In view of the highly specific effect of ryanodine on
the calcium channels of the junctional SR, one wonders
whether the alkaloid also affects the calcium or calcium release from junctional release stores is ques-
tionable.
In view of the highly specific effect of ryanodine on
the calcium channels of the junctional SR, one wonders
whether the alkaloid also affects the calciu In view of the highly specific effect of ryanodine on
the calcium channels of the junctional SR, one wonders
whether the alkaloid also affects the calcium channels of
the sarcolemma. In a careful study on the effect of
rya the calcium channels of the junctional SR, one wonders
whether the alkaloid also affects the calcium channels of
the sarcolemma. In a careful study on the effect of
ryanodine on the contractile performance of guinea pig
p whether the alkaloid also affects the calcium channels of
the sarcolemma. In a careful study on the effect of
ryanodine on the contractile performance of guinea pig
papillary muscles, it was found that, in a rather high
co the sarcolennia. In a careful study on the effect of
ryanodine on the contractile performance of guinea pig
papillary muscles, it was found that, in a rather high
concentration (2 μ mol/liter), the alkaloid exerts a bipapillary muscles, it was found that, in a rather high concentration (2 μ mol/liter), the alkaloid exerts a biphasic effect (148). Immediately after the addition of the substance, the contraction force declined as a res the loss of the early contraction component. However, after 4 min, the force of the remaining late component concentration $(2 \mu \text{mol/mer})$, the anxiold exerts a biphasic effect (148). Immediately after the addition of the substance, the contraction force declined as a result of the loss of the early contraction component. However phasic effect (148). Immediately after the addition of the
substance, the contraction force declined as a result of
the loss of the early contraction component. However,
after 4 min, the force of the remaining late compone substance, the contraction force decimed as a result
the loss of the early contraction component. Howev
after 4 min, the force of the remaining late compone
began to increase, with a continuous increase of the ti
to peak f the foss of the early contraction component. However,
after 4 min, the force of the remaining late component
began to increase, with a continuous increase of the time
to peak force until, 50 min after the addition of ryano after 4 min, the force of the remaining late component began to increase, with a continuous increase of the tim
to peak force until, 50 min after the addition of ryand
dine, the force that developed in the late component c began w increase, with a continuous increase of the time
to peak force until, 50 min after the addition of ryano-
dine, the force that developed in the late component of
contraction was equal to that of the early component been made by others on cardiac muscle of the cat and contraction was equal to that of the early component before addition of the drug. Similar observations have been made by others on cardiac muscle of the cat and dog (281 contraction was equal to that of the early component
before addition of the drug. Similar observations have
been made by others on cardiac muscle of the cat and
dog (281, 377, 207). The transmembrane action potential
was been made by others on cardiac muscle of the cat and been made by others on cardiac muscle of the cat and
dog (281, 377, 207). The transmembrane action potential
was found to be prolonged (14); the "slow" potential at
24 mmol/liter of K⁺ was also prolonged, and its veloci dog (281, 377, 207). The transmembrane action potential
was found to be prolonged (14); the "slow" potential at
24 mmol/liter of K^+ was also prolonged, and its velocity
of depolarization was slightly increased (148, 33 was round to be prolonged (14); the "slow" potential at 24 mmol/liter of K^+ was also prolonged, and its velocity of depolarization was slightly increased (148, 339). A prolongation of the calcium current was also obtain or depolarization was slightly increased (148, 339). A prolongation of the calcium current was also obtained in rat ventricular muscle cells (267). However, in cesium-
dialyzed guinea pig ventricular myocytes the amplitud prolongation of the calcium current was also obtained
rat ventricular muscle cells (267) . However, in cesiu
dialyzed guinea pig ventricular myocytes the amplitu
time course, and voltage dependence of I_{Ca} were a
affec rat ventricular muscle cells (207). However, in cesium-
dialyzed guinea pig ventricular myocytes the amplitude,
time course, and voltage dependence of I_{Ca} were not
affected by ryanodine (290). This indicates that ryano time course, and voltage dependence of I_{Ca} were not affected by ryanodine (290). This indicates that ryano-
dine has no direct influence on the sarcolemmal calcium time course, and voltage dependence of L_{Ca} were not affected by ryanodine (290). This indicates that ryano-
dine has no direct influence on the sarcolemmal calcium
channel and that the observed prolongation of the calchannel and that the observed prolongation of the calcium current (with the effect on the late contraction peak) is probably the consequence of the lack of an early increase in cytosolic calcium concentration and its influ enannel and that the observed prolongation of
cium current (with the effect on the late con
peak) is probably the consequence of the lack of
increase in cytosolic calcium concentration and i
ence on the ionic conductance o **peak**) is probably the consequence of the lack of an early
increase in cytosolic calcium concentration and its influ-
ence on the ionic conductance of the sarcolemma.
E. Caffeine
Caffeine has, besides its inhibiting act crease in cytosolic calcium concentration and its in
ce on the ionic conductance of the sarcolemma.
Caffeine has, besides its inhibiting action on phosphoterase (section III C 3), a special effect on the Sl

ence on the ionic conductance of the sarcolemma.

E. Caffeine

Caffeine has, besides its inhibiting action on phospho-

diesterase (section III C 3), a special effect on the SR of

skeletal and cardiac muscle which is inde E. Caffeine
Caffeine has, besides its inhibiting action on phospho-
diesterase (section III C 3), a special effect on the SR of
skeletal and cardiac muscle which is independent of and
functionally antagonistic to that of c Caffeine has, besides its inhibiting action on phospho-
diesterase (section III C 3), a special effect on the SR of
skeletal and cardiac muscle which is independent of and
functionally antagonistic to that of cyclic AMP. Carreine has, besides its inhibiting action on phospho-
diesterase (section III C 3), a special effect on the SR of
skeletal and cardiac muscle which is independent of and
functionally antagonistic to that of cyclic AMP. F difference (section III C 3), a special effect on the SK of
skeletal and cardiac muscle which is independent of and
functionally antagonistic to that of cyclic AMP. From
the standpoint of the positive inotropic action of a Skeletal and cardiac muscle which is independent of
functionally antagonistic to that of cyclic AMP. F
the standpoint of the positive inotropic action of a
(selectively acting) phosphodiesterase inhibitor
IBMX; this second Innetionally antagonistic to that of cyclic AMP. From
the standpoint of the positive inotropic action of a pure
(selectively acting) phosphodiesterase inhibitor like
IBMX; this second action of caffeine (and of theophyl-
l the standpoint of the positive inotropic action of a
(selectively acting) phosphodiesterase inhibitor
IBMX; this second action of caffeine (and of theor
line) is an unsought side effect which occurs in
millimolar concentra (selectively acting) phosphodiesterase inhibitor like
IBMX; this second action of caffeine (and of theophyl-
line) is an unsought side effect which occurs in the
millimolar concentration range, whereas the phosphodi-
ester

aspet

CALCIUM MOBILIZATION AND CARDIAC INOTROPIC MECHANISMS
Studies on the effects of caffeine on ATPase activity, the observation that the supprealcium transport (404), and calcium accumulation of traction component of an intac CALCIUM MOBILIZATION AND CARD
Studies on the effects of caffeine on ATPase activity, the
calcium transport (404), and calcium accumulation of the SR isolated from skeletal muscle (406, 199) suggest by CALCIUM MOBILIZATION AND CA
Studies on the effects of caffeine on ATPase activity,
calcium transport (404), and calcium accumulation of
the SR isolated from skeletal muscle (406, 199) suggest
that caffeine acts by increasi Studies on the effects of caffeine on ATPase activity, the calcium transport (404), and calcium accumulation of trease. The SR isolated from skeletal muscle (406, 199) suggest by that caffeine acts by increasing the permea Studies on the effects of caffeine on ATPase activity, the calcium transport (404) , and calcium accumulation of the SR isolated from skeletal muscle $(406, 199)$ suggest behat caffeine acts by increasing the permeabilit calcium transport (404) , and calcium accumulation of the SR isolated from skeletal muscle $(406, 199)$ suggest be that caffeine acts by increasing the permeability of the sSR membrane to calcium (199) . The increased l the SR isolated from skeletal muscle (406, 199) suggest by
that caffeine acts by increasing the permeability of the
SR membrane to calcium (199). The increased leakage from
of calcium from the SR is modulated by the relati that caffeine acts by increasing the permeability of the s-
SR membrane to calcium (199). The increased leakage five of calcium from the SR is modulated by the relative b-
internal and external calcium concentrations (198 SR membrane to calcium (199). The increased leakage fro
of calcium from the SR is modulated by the relative by
internal and external calcium concentrations (198). The
entire surface of the SR must be involved, since speci internal and external calcium concentrations (198). The The entire surface of the SR must be involved, since specific state of caffeine-sensitive Ca²⁺ gates have been found not only the SI in the heavy (junctional) SR, caffeine-sensitive Ca^{2+} gates have been found not only
in the heavy (junctional) SR, but also in the lighter
vesicular fractions of the free or longitudinal SR
(270, 370). The effects of caffeine on ATPase activity and

in the heavy (junctional) SR, but also in the lighter tivesicular fractions of the free or longitudinal SR p (270, 370). fither free studied in SR vesicles from cardiac nuscle of guinea pigs (284), rats (284), and rabbits vesicular fractions of the free or longitudinal SR
(270, 370).
The effects of caffeine on ATPase activity and calcium
uptake have been studied in SR vesicles from cardiac
muscle of guinea pigs (284), rats (284), and rabbit (270, 370). Fig. 16

The effects of caffeine on ATPase activity and calcium ent in

uptake have been studied in SR vesicles from cardiac no rel

muscle of guinea pigs (284), rats (284), and rabbits (35). state

In all spe The effects of caffeine on ATPase activity and calcium
uptake have been studied in SR vesicles from cardiac
muscle of guinea pigs (284), rats (284), and rabbits (35).
In all species it was found that caffeine impaired calc uptake have been studied in SR vesicles from card
muscle of guinea pigs (284) , rats (284) , and rabbits (3)
In all species it was found that caffeine impaired calci
accumulation by isolated SR vesicles, but paradoxic muscle of guinea pigs (284), rats (284), and rabbits (35).
In all species it was found that caffeine impaired calcium
accumulation by isolated SR vesicles, but paradoxically
it could increase the rate constant for calcium In all species it was found that caffeine impaired calcium is accumulation by isolated SR vesicles, but paradoxically lest it could increase the rate constant for calcium accumulation and the Ca^{2+} -activated ATPase acti accumulation by isolated SR vesicles, but paradoxically leaft to culd increase the rate constant for calcium accumulation and the Ca^{2+} -activated ATPase activity (35). It ulambibited calcium accumulation to a greater ex it could increase the rate constant for calcium accunduction and the Ca²⁺-activated ATPase activity (35).
inhibited calcium accumulation to a greater extent whexternal (cytosolic) calcium concentration was low, a
to a sm lation and the Ca^{2+} -activated ATPase activity (35). It
inhibited calcium accumulation to a greater extent when
external (cytosolic) calcium concentration was low, and
to a smaller extent if the internal free calcium co immoted caffelin accumulation to a greater extent when most
external (cytosolic) calcium concentration was low, and tract
to a smaller extent if the internal free calcium concen-
tration of the SR was kept low by oxalate. to a smaller extent if the internal free calcium concentration of the SR was kept low by oxalate. These findings (imply that caffeine increases the passive efflux of calcium the SR vesicles when the outward gradient is hig tration of the SR was kept low by oxalate. These findings (46)
imply that caffeine increases the passive efflux of calcium thro
from the SR vesicles when the outward gradient is high by c
and thus that caffeine also acts i imply that caffeine increases the passive efflux of calcium the from the SR vesicles when the outward gradient is high by and thus that caffeine also acts in mammalian cardiac calcium (35). Functional evidence for an incr from the SR vesicles when the outward gradient is high b and thus that caffeine also acts in mammalian cardiac comuscle by making the SR membrane more permeable to is calcium (35). Functional evidence for an increased rate and thus that caffeine also acts in mammalian cardiac muscle by making the SR membrane more permeable to calcium (35). Functional evidence for an increased rate of release of activator calcium from the SR was obtained in i muscle by making the SR membrane more permeable to
calcium (35). Functional evidence for an increased rate
of release of activator calcium from the SR was obtained
in intact ventricular muscle preparations of various (
mam calcium (35). Functional evidence for an increased range of release of activator calcium from the SR was obtain
in intact ventricular muscle preparations of vario-
mammalian species (81) and in skinned canine cardi
Purkinj of release of activator calcium from the SR was obtained a
in intact ventricular muscle preparations of various (2
mammalian species (81) and in skinned canine cardiac la
Purkinje cells (115). The effect resembles that of in intact ventricular muscle preparations of various (296) .
mammalian species (81) and in skinned canine cardiac lation
Purkinje cells (115). The effect resembles that of ryano-
dine (see section IV D) in that it leads mammalian species (81) and in skinned canine cardiac
Purkinje cells (115). The effect resembles that of ryano-
dine (see section IV D) in that it leads to an increase of
the spontaneous rate of calcium leakage from the SR
 dine (see section IV D) in that it leads to an increase of caffeine consists predominantly of an increase in calcium
the spontaneous rate of calcium leakage from the SR influx through the sarcolemma (205, 288).
with an acc dine (see section IV D) in that it leads to an increase of
the spontaneous rate of calcium leakage from the SR
with an accompanying reduction of the calcium content
of the release compartments and, consequently, to a
dimin the spontaneous rate of calcium leakage from the SR in with an accompanying reduction of the calcium content of the release compartments and, consequently, to a the diminution or total suppression of the early contraction with an accompanying reduction of the calcium content
of the release compartments and, consequently, to a
diminution or total suppression of the early contraction
component (40, 157, 218, 46). For the increased loss of va of the release compartments and, consequently, to a diminution or total suppression of the early contraction component (40, 157, 218, 46). For the increased loss of calcium from the release compartments of the SR, it is a diminution or total suppression of the early contraction
component (40, 157, 218, 46). For the increased loss of
calcium from the release compartments of the SR, it is
apparently unimportant whether calcium leaks (as unde component (40, 157, 218, 46). For the increased loss of valuation from the release compartments of the SR, it is cively apparently unimportant whether calcium leaks (as under op the influence of ryanodine) through the spe calcium from the release compartments of the SR, it is c
apparently unimportant whether calcium leaks (as under of
the influence of ryanodine) through the specific Ca^{2+} la
release channels at the foot structures connec apparently unimportant whether calcium leaks (as under or
the influence of ryanodine) through the specific Ca^{2+}
release channels at the foot structures connecting the b
junctional SR with the sarcolemma or through spec the influence of ryanodine) through the specific Ca^{2+}
release channels at the foot structures connecting the
junctional SR with the sarcolemma or through specific
caffeine-sensitive Ca^{2+} gates distributed over the e release channels at the foot structures connecting the junctional SR with the sarcolemma or through specific caffeine-sensitive Ca²⁺ gates distributed over the entire SR. However, this difference becomes noticeable if, u SR. However, this difference becomes noticeable if, under high calcium loading conditions, spontaneous mechanical oscillations occur in unstimulated cardiac muscle preparations. The frequency of these oscillations, which a SR. However, this difference becomes noticeable if, un-
der high calcium loading conditions, spontaneous me-
chanical oscillations occur in unstimulated cardiac mus-
guinea
cle preparations. The frequency of these oscillat der high calcium loading conditions, spontaneous mechanical oscillations occur in unstimulated cardiac mus-
cle preparations. The frequency of these oscillations,
which are caused by spontaneous calcium release from
the SR cle preparations occur in unstimulated cafuat mus-
cle preparations. The frequency of these oscillations,
which are caused by spontaneous calcium release from
the SR (section IV B), is decreased by ryanodine, whereas
it is which are caused by spontaneous calcium release from and
the SR (section IV B), is decreased by ryanodine, whereas lari
it is increased by caffeine (230; see section IV B 3). The the
increased frequency of spontaneous cycl the SR (section IV B), is decreased by ryanodine, where it is increased by caffeine (230; see section IV B 3).

increased frequency of spontaneous cyclic contractions found, in skinned guinea pig cardiac fibers, to prevent it is increased by caffeine (230; see section IV B 3). The the m
increased frequency of spontaneous cyclic contractions The a
was found, in skinned guinea pig cardiac fibers, to be lowest
prevented by procaine (209). This increased frequency of spontaneous cyclic contractions The
was found, in skinned guinea pig cardiac fibers, to be low
prevented by procaine (209). This points to procaine-
material entagonism at the caffeine-sensitive calc

the observation that the suppression of the early contraction component of an intact kitten papillary muscle the component of an intact kitten papillary contraction component of an intact kitten papillary muscle
by caffeine was antagonized by procaine (40). The rever-BUAC INOTROPIC MECHANISMS 20
the observation that the suppression of the early contraction component of an intact kitten papillary musc
by caffeine was antagonized by procaine (40). The rever-
sal by procaine of the caffei the observation that the suppression of the early contraction component of an intact kitten papillary muscle by caffeine was antagonized by procaine (40). The reversal by procaine of the caffeine-induced release of calcium traction component of an in
by caffeine was antagonized
sal by procaine of the caffeir
from the SR of skeletal mus
by Weber and Herz (406).
The action of caffeine an sal by procaine of the caffeine-induced release of calcium
from the SR of skeletal muscle had been reported earlier
by Weber and Herz (406).
The action of caffeine and theophylline under rested from the SR of skeletal muscle had been reported earlier

caffeine-sensitive Ca²⁺ gates have been found not only the SR. The action consists of a late-appearing contrac-
in the heavy (junctional) SR, but also in the lighter tion peak (fig. 5 of ref. 40; 24) which resembles tha state conditions is virtually uninfluenced by an effect on by Weber and Herz (406).
The action of caffeine and theophylline under rested
state conditions is virtually uninfluenced by an effect on
the SR. The action consists of a late-appearing contrac-
tion peak (fig. 5 of ref. 40 The action of caffeine and theophylline under rested
state conditions is virtually uninfluenced by an effect on
the SR. The action consists of a late-appearing contrac-
tion peak (fig. 5 of ref. 40; 24) which resembles tha state conditions is virtually diminuenced by an ent
the SR. The action consists of a late-appearing co
tion peak (fig. 5 of ref. 40; 24) which resemble
produced by catecholamines in all respects (345; se
fig. 1a) and prob the SR. The action consists of a late-appearing contraction peak (fig. 5 of ref. 40; 24) which resembles that produced by catecholamines in all respects (345; see also fig. 1*a*) and probably results from a cyclic AMP-dep produced by catecholamines in all respects (345; see also fig. 1a) and probably results from a cyclic AMP-dependent increase in I_{Ca} into a cardiac cell whose SR contains no releasable calcium (see section III A). The l produced by catedronamines in an respects (340, see also
fig. 1a) and probably results from a cyclic AMP-depend-
ent increase in I_{Ca} into a cardiac cell whose SR contains
no releasable calcium (see section III A). The ig. 1*u*) and probably results from a cyclic AWP-dependent increase in I_{Cs} into a cardiac cell whose SR contains
no releasable calcium (see section III A). The late rested
state contraction under the influence of norep no releasable calcium (see section III A). The late rested
state contraction under the influence of norepinephrine
leakage from the SR becomes noticeable by the delay in
contraction development if the muscle is stimulated is strengthened by carieme (40). The increased carrier
leakage from the SR becomes noticeable by the delay is
contraction development if the muscle is stimulated reg
ularly at relatively low frequencies (40). The effect is traction development if the muscle is stimulated regularly at relatively low frequencies (40). The effect is most obvious if caffeine acts on a two component contraction in the presence of norepinephrine: it eliminates the contraction development if the muscle is stimulated regularly at relatively low frequencies (40). The effect if most obvious if caffeine acts on a two component contraction in the presence of norepinephrine: it eliminate t diarity at relatively low frequencies (40). The effect is
most obvious if caffeine acts on a two component con-
traction in the presence of norepinephrine: it eliminates
the early and strengthens the late contraction compo most obvious in carieme acts on a two component con-
traction in the presence of norepinephrine: it eliminates
the early and strengthens the late contraction component
(46). Activity-dependent inotropic effects which opera (46). Activity-dependent inotropic effects which operate

through increased calcium loading of the SR are inhibited

by caffeine, such as post-extrasystolic potentiation in the

cat heart (157), the progressive increase in through increased carrum loading of the SK are immoted
by caffeine, such as post-extrasystolic potentiation in the
cat heart (157), the progressive increase in the mechan-
ical responses to successive depolarizing pulses u cat heart (157), the progressive increase in the mecical responses to successive depolarizing pulses u
voltage clamp, and the increase in peak force that fol
a period of depolarization in the dog papillary mu
(296). Likewi lation responses to successive depotatizing pulses under
voltage clamp, and the increase in peak force that follows
a period of depolarization in the dog papillary muscle
(296). Likewise, in dog ventricular muscle, post-st a period of depolarization in the dog papillary muscle

(296). Likewise, in dog ventricular muscle, post-stimu-

lation potentiation is inhibited by theophylline (110).

Understandably, in frog ventricular muscle, the act (296). Likewise, in dog ventricular muscle, lation potentiation is inhibited by theophy. Understandably, in frog ventricular muscle, it caffeine consists predominantly of an increasinflux through the sarcolemma (205, 288) As in the case of ryanodical by the case in cation of
ffeine consists predominantly of an increase in calcium
flux through the sarcolemma (205, 288).
As in the case of ryanodine, the effect of caffeine on
e early contracti caffeine consists predominantly of an increase in calcium

caffeine consists predominantly of an increase in calcium
influx through the sarcolemma (205, 288).
As in the case of ryanodine, the effect of caffeine c
the early contraction component can, at least to a gree
extent, be o influx through the sarcolemma (205, 288).

As in the case of ryanodine, the effect of caffeine on

the early contraction component can, at least to a great

extent, be overcome by decreasing the contraction inter-

val (40 As in the case of ryandume, the effect of calience of
the early contraction component can, at least to a great
extent, be overcome by decreasing the contraction inter-
val (40) and thus shortening the time available for ca val (40) and thus shortening the time available for calcium leakage from the SR. Under such conditions, theophylline increases force of contraction of dog ventricuval (40) and thus shottening the time available for car-
cium leakage from the SR. Under such conditions, the-
ophylline increases force of contraction of dog ventricu-
lar muscle at low concentrations (0.1 to 0.6 mmol/lit ophylline increases force of contraction of dog ventric
lar muscle at low concentrations (0.1 to 0.6 mmol/lite
by increasing the rate of force development, but with
higher concentrations (1 to 20 mmol/liter), a furth
incre ity, to a prolongation of the time to peak force is due, at unchanged contraction velocity, to a prolongation of the time to peak force (37). A similar action of theophylline had been observed in the guinea pig papillary higher concentrations (1 to 20 mmol/liter), a further increase of force is due, at unchanged contraction velocity, to a prolongation of the time to peak force (37). A similar action of theophylline had been observed in the Increase of force is due, at unchanged contraction velocity, to a prolongation of the time to peak force (37). A similar action of theophylline had been observed in the guinea pig papillary muscle (218).
Together with the

and Endoh (37) recorded the light signals of intracellu-
larly applied aequorin which disclosed the influence of
the methylxanthine on the cytosolic calcium transients. guinea pig papillary muscle (218).
Together with the isometric contraction curves, Blink
and Endoh (37) recorded the light signals of intracellu
larly applied aequorin which disclosed the influence of
the methylxanthine on Together with the isometric contraction curves, Blinks
and Endoh (37) recorded the light signals of intracellu-
larly applied aequorin which disclosed the influence of
the methylxanthine on the cytosolic calcium transients and Endon (57) recorded the fight signals of intracend-
larly applied aequorin which disclosed the influence of
the methylxanthine on the cytosolic calcium transients.
The amplitude of the calcium transient increased at t mary applied aequorm which disclosed the influence of
the methylxanthine on the cytosolic calcium transients.
The amplitude of the calcium transient increased at the
lowest inotropically effective concentrations (0.1 to 0. lowest inotropically effective concentrations (0.1 to 0.3 mmol/liter), but it decreased at higher concentrations.
At concentrations above 1 mmol/liter, the amplitude of the aequorin signal was below the control level, and

aspet

206
continued to fall as the drug concentration was increased. laid
Concomitantly with the decline of its amplitude there res REITER
Continued to fall as the drug concentration was increased. La
Concomitantly with the decline of its amplitude there
was a progressive prolongation of the aequorin signal be REFI
continued to fall as the drug concentration was increased.
Concomitantly with the decline of its amplitude there
was a progressive prolongation of the aequorin signal
until a second light peak became distinguishable w until a second to fall as the drug concentration was increased. In Concomitantly with the decline of its amplitude there requass a progressive prolongation of the aequorin signal beatill a second light peak became distingu continued to fall as the drug concentration was increased.
Concomitantly with the decline of its amplitude there
was a progressive prolongation of the aequorin signal
until a second light peak became distinguishable which
 Concomitantly with the decline of its amplitude there rewas a progressive prolongation of the aequorin signal until a second light peak became distinguishable which meas finally higher than the remnant of the early contro was a progressive prolongation of the aequorin signal
until a second light peak became distinguishable which
was finally higher than the remnant of the early control
signal. The second peak of the calcium transient started until a second light peak became distinguishable which
was finally higher than the remnant of the early control
signal. The second peak of the calcium transient started
about 100 ms later, and then declined with a half-tim signal. The second peak of the calcium transient started
about 100 ms after stimulation of the muscle, culminated
about 50 ms later, and then declined with a half-time
considerably longer than in the control record. The ef about 100 ms after stimulation of the muscle, culminated
about 50 ms later, and then declined with a half-time
considerably longer than in the control record. The ef-
fects of the low concentrations of the drug were though about 50 ms later, and then declined with a half-tim
considerably longer than in the control record. The e
fects of the low concentrations of the drug were though
by the authors to result from an elevation of cytoplasm
cyc considerably longer than in the control record. The effects of the low concentrations of the drug were thought
by the authors to result from an elevation of cytoplasmic
cyclic AMP concentration due to the inhibition of ph fects of the low concentrations of the drug were thought the authors to result from an elevation of cytoplase cyclic AMP concentration due to the inhibition of photolesterase, whereas they regarded the effects higher conce by the authors to result from an elevation of cytoplasmic cyclic AMP concentration due to the inhibition of phos-
phodiesterase, whereas they regarded the effects of
higher concentrations on the calcium transient as refle cyclic AMP concentration due to the inhibition of phos-
phodiesterase, whereas they regarded the effects of
higher concentrations on the calcium transient as reflect-
ing the action of theophylline on the SR (37). Indeed, higher concentrations on the calcium transient as reflect-
ing the action of theophylline on the SR (37). Indeed, it
seems very likely that the concentration-dependent de-
crease of an early aequorin light signal reflects ing the action of theophylline on the SR (37). Indeed, it
seems very likely that the concentration-dependent de-
crease of an early aequorin light signal reflects the pro-
gressive reduction of the content of activator cal seems very likely that the concentration-dependent decrease of Na⁺ (316). From such sarcolem-
crease of an early aequorin light signal reflects the pro-
gressive reduction of the content of activator calcium in partiall crease of an early aequorin light signal reflects the progressive reduction of the content of activator calcium in pathe release compartments of the SR caused by the drug-
induced increase of the rate of calcium leakage from the μ m
SR. This brings the muscle functionally int the release compartments of the SR caused by the drug-
induced increase of the rate of calcium leakage from the μ m
SR. This brings the muscle functionally into the situa-
invition of the rested state (section III A), i induced increase of the rate of calcium leakage from the μ mol/
SR. This brings the muscle functionally into the situa-
involved into of the rested state (section III A), in spite of the specif
relatively high contracti SK. This brings the muscle functionally into the situation of the rested state (section III A), in spite of the speakively high contraction frequency. Consistent with 0.3 the reduction of the early part of the cytosolic c relatively high contraction frequency. Consistent with 0.3 μ mol/liter; ref. 72; see section VI). However, the
the reduction of the early part of the cytosolic calcium
transient is the observation of a concentration-dep the reduction of the early part of the cytosolic calcium
transient is the observation of a concentration-depend-
ent increase in the duration of the transmembrane action
potentials produced by caffeine in guinea pig and k transient is the observation of a concentration-depend-
ent increase in the duration of the transmembrane action
potentials produced by caffeine in guinea pig and kitten
cardiac muscle (89, 86). This is presumably because ent increase in the duration of the transmembrane action
potentials produced by caffeine in guinea pig and kitt
cardiac muscle (89, 86). This is presumably because the
stimulating effect of the initial intracellular calciu potentials produced by caffeine in guindicardiac muscle (89, 86). This is presured stimulating effect of the initial intuitansient on the potassium conducta lemma is reduced (see section II C). As in rested state contracti rdiac muscle (89, 86). This is presumably because the commulating effect of the initial intracellular calcium variations under the sarcomma is reduced (see section II C).
As in rested state contractions under the influenc stimulating effect of the initial intracellular calcius
transient on the potassium conductance of the sarce
lemma is reduced (see section II C).
As in rested state contractions under the influence
catecholamines, the meth

transient on the potassium conductance of the sarcollemma is reduced (see section II C).
As in rested state contractions under the influence of method
animes, the methylxanthine-dependent elevation of cyclic AMP will incr biomagnet is reduced (see section II C).

As in rested state contractions under the influence of $\frac{m}{\text{catecholamines}}$, the methylxanthine-dependent elevation of cyclic AMP will increase I_{Ca} . In the light of the biochemical As in rested state contractions under the influence of catecholamines, the methylxanthine-dependent elevation of cyclic AMP will increase I_{Cs} . In the light of biochemical reports of an increased rate constant of calciu cate cholamines, the methylxanthine-dependent elevation of cyclic AMP will increase I_{Ca} . In the light of the biochemical reports of an increased rate constant of the calcium accumulation into the SR (see above and ref. biochemical reports of an increased rate constant of calcium accumulation into the SR (see above and ref. 35), there is no reason to assume that the inflowing calcium is not taken up by the SR before it is released after s calcium accumulation into the SR (see above and 35), there is no reason to assume that the inflow
calcium is not taken up by the SR before it is relea
after some delay into the cytosol, giving rise to a p
nounced late calc 35), there is no reason to assume that the inflow calcium is not taken up by the SR before it is released after some delay into the cytosol, giving rise to a p nounced late calcium transient and a prolonged contration. Whe calcium is not taken up by the SR before it is released outward or inward depending on the direction and mag-
after some delay into the cytosol, giving rise to a pro-
nounced late calcium transient and a prolonged contrac nounced late calcium transient and a prolonged contraction. Whether calcium is released only through voltage-
dependent gates or whether calcium leakage through
caffeine-sensitive gates is also involved in the course of
th on. Whether calcium is released only through voltage-
pendent gates or whether calcium leakage through
ffeine-sensitive gates is also involved in the course of
e calcium transient is not clear.
The same pattern of effects

dependent gates or whether calcium leakage through
caffeine-sensitive gates is also involved in the course of
the calcium transient is not clear.
The same pattern of effects of theophylline and caf-
feine on intracellular caffeine-sensitive gates is also involved in the course of
the calcium transient is not clear.
The same pattern of effects of theophylline and caf-
feine on intracellular calcium transient and contraction
was observed in was observed in cat papillary muscles (9, 273, 41), and compatible results have been obtained with rat ventric-
ular muscle (216) and canine Purkinje fibers (158). The The same pattern of effects of theophylline and caf-
feine on intracellular calcium transient and contraction
was observed in cat papillary muscles $(9, 273, 41)$, and
compatible results have been obtained with rat ventri feine on intracellular calcium transient and contraction
was observed in cat papillary muscles $(9, 273, 41)$, and
compatible results have been obtained with rat ventric-
ular muscle (216) and canine Purkinje fibers $(1$ was observed in cat papillary muscles $(9, 273, 41)$, and
compatible results have been obtained with rat ventric-
ular muscle (216) and canine Purkinje fibers (158) . The
precise relative importance for the overall eff compatible results have been obtained with rat ventric-
ular muscle (216) and canine Purkinje fibers (158). The
precise relative importance for the overall effects of the
methylxanthines of an increased calcium sensitivit ular muscle (216) and canine Purkinje fibers (158). The precise relative importance for the overall effects of the methylxanthines of an increased calcium sensitivity of (the myofilaments as observed in skinned cardiac mu precise relative importance for the overall effective imethylxanthines of an increased calcium set
the myofilaments as observed in skinned card
preparations (411) or in voltage-clamped she
Purkinje fibers (104) remains to methylxanthines of an increased calcium sensitivity of
the myofilaments as observed in skinned cardiac muscle
preparations (411) or in voltage-clamped sheep cardiac
Purkinje fibers (104) remains to be elucidated.
V. Sodium

A. Cakium Extrusion

ultimately to be extruded again in order to maintain the

ER
large concentration gradient which is necessary for its
regulatory function. Part of this uphill movement has ER
large concentration gradient which is necessary for its
regulatory function. Part of this uphill movement has
been found to depend on extracellular sodium in heart
muscle (330) as in nerve (33) and attributed to exchang large concentration gradient which is necessary for its regulatory function. Part of this uphill movement has been found to depend on extracellular sodium in heart muscle (330) as in nerve (33) and attributed to exchange d diffusion in which calcium efflux is completed to exchange diffusion in which calcium efflux is coupled to sodium entry. In this sodium-calcium exchange the energy for extruding calcium is provided by the downhill movement been found to depend on extracellular sodium in heart
muscle (330) as in nerve (33) and attributed to exchange
diffusion in which calcium efflux is coupled to sodium
entry. In this sodium-calcium exchange the energy for
ex muscle (330) as in nerve (33) and attributed to exchibility diffusion in which calcium efflux is coupled to sodentry. In this sodium-calcium exchange the energy extruding calcium is provided by the downhill moven of sodium diffusion in which calcium efflux is coupled to sodium
entry. In this sodium-calcium exchange the energy for
extruding calcium is provided by the downhill movement
of sodium. Consistent with a bidirectional carrier-me-
dia entry. In this sodium-calcium exchange the energy for extruding calcium is provided by the downhill movement
of sodium. Consistent with a bidirectional carrier-me-
diated sodium-calcium exchange system is a calcium
influx extruding calcium is provided by the downhill movement
of sodium. Consistent with a bidirectional carrier-me-
diated sodium-calcium exchange system is a calcium
influx component that depends on [Na]; (15, 143). The
activit of sodium. Consistent with a bidirectional carrier-me-
diated sodium-calcium exchange system is a calcium
influx component that depends on $[Na]_i$ (15, 143). The
activity of this transport system has been demonstrated
in diated sodium-calcium exchange system is a calcium
influx component that depends on $[Na]_i$ (15, 143). The
activity of this transport system has been demonstrated
in a preparation of cardiac sarcolemmal vesicles in which
 influx component that depends on $[Na]_i$ (15, 143). The activity of this transport system has been demonstrated in a preparation of cardiac sarcolemmal vesicles in which transmembrane Ca^{2+} movements in either direction activity of this transport system has been demonstrain a preparation of cardiac sarcolemmal vesicles in which transmembrane Ca^{2+} movements in either direct could be induced by generating oppositely directed contration in a preparation of cardiac sarcolemmal vesicles in which
transmembrane Ca^{2+} movements in either direction
could be induced by generating oppositely directed con-
centration gradients of Na⁺ (316). From such sarcolem transmembrane Ca^{2+} movements in either direction
could be induced by generating oppositely directed con-
centration gradients of Na⁺ (316). From such sarcolem-
mal vesicles, the sodium-calcium exchanger has been
part could be induced by generating oppositely directed concentration gradients of Na⁺ (316). From such sarcolem-
mal vesicles, the sodium-calcium exchanger has been
partially purified and identified as a glycoprotein (151). centration gradients of Na⁺ (316). From such sarcolem-
mal vesicles, the sodium-calcium exchanger has been
partially purified and identified as a glycoprotein (151).
The affinity of the exchanger for Ca²⁺ (apparent K mal vesicles, the sodium-calcium exchanger has been
partially purified and identified as a glycoprotein (151).
The affinity of the exchanger for Ca^{2+} (apparent K_m 1.5
 μ mol/liter; ref. 73) is lower than that of ano partially purified and identified as a glycoprotein (151).

The affinity of the exchanger for Ca^{2+} (apparent K_m 1.5
 μ mol/liter; ref. 73) is lower than that of another system

involved in the extrusion of Ca^{2+} μ mol/liter; ref. 73) is lower than that of another system mvolved in the extrasion of
specific Ca²⁺-pumping ATPas
0.3 μ mol/liter; ref. 72; see a
maximal velocity of Ca²⁺ pum
(17) to 30 times (73) as high.
The stoichiometry of the Na ecific Ca²⁺-pumping ATPase of the sarcolemma (K_m)
3 μ mol/liter; ref. 72; see section VI). However, the
aximal velocity of Ca²⁺ pumping by the exchanger is 5
7) to 30 times (73) as high.
The stoichiometry of the Na

after some delay into the cytosol, giving rise to a pro-
nitude of the electrochemical gradients for Na⁺ and Ca²⁺,
nounced late calcium transient and a prolonged contrac-
tion. Whether calcium is released only through V. Sodium-Calcium Exchange

V. Sodium-Calcium Exchange

Calcium Extrusion

Calcium entering the cell during rest or activity has

Calcium entering the cell during rest or activity has

Calcium entering the cell during res could be matted by generating oppositely one of the calculation gradients of Na⁺ (316). From such sare
clemental velocities, the sodium-calcium exchanger has been
partially purified and identified as a glycoprotein (151 0.3 μ mol/liter; ref. 72; see section VI). However, the
maximal velocity of Ca²⁺ pumping by the exchanger is 5
(17) to 30 times (73) as high.
The stoichiometry of the Na-Ca exchange determined
by Pitts (308) from meas maximal velocity of Ca^{2+} pumping by the exchanger is 5
(17) to 30 times (73) as high.
The stoichiometry of the Na-Ca exchange determined
by Pitts (308) from measurements of tracer fluxes in
cardiac sarcolemmal vesicles The stoichiometry of the Na-Ca exchange determin
by Pitts (308) from measurements of tracer fluxes
cardiac sarcolemmal vesicles was 3 Na⁺ to 1 Ca²⁺. Simil
values have been obtained by other authors with sarc
lemma The stoichiometry of the Na-Ca exchange determine
by Pitts (308) from measurements of tracer fluxes is
cardiac sarcolemmal vesicles was 3 Na⁺ to 1 Ca²⁺. Simila
values have been obtained by other authors with sarce by Pitts (308) from measurements of tracer fluxes in cardiac sarcolemmal vesicles was 3 Na^+ to 1 Ca^{2+} . Similar values have been obtained by other authors with sarcolemmal vesicles (315), frog atrial tissue (176 cartuate sartoiemmal vesicies was 3 Na to 1 Ca. Similar
values have been obtained by other authors with sarco-
lemmal vesicles (315), frog atrial tissue (176, 82), mam-
malian cardiac muscle (348, 80, 59), and squid axons lemmal vesicles (315), frog atrial tissue (176, 82), mammalian cardiac muscle (348, 80, 59), and squid axone
(34). A stoichiometry of more than 2 Na^+ per Ca^{2+} implies
that the Na-Ca exchange must be electrogen (34). A stoichiometry of more than 2 Na^+ per Ca^{2+} implies that the Na-Ca exchange must be electrogenic. Indeed, the operation of the exchanger in cardiac sarcolemmal vesicles has been shown to generate an elec (34). A stoichiometry of more than 2 Na^+ per Ca^{2+} implies
that the Na-Ca exchange must be electrogenic. Indeed,
the operation of the exchanger in cardiac sarcolemmal
vesicles has been shown to generate an elec that the Na-Ca exchange must be electrogenic. Indeed
the operation of the exchanger in cardiac sarcolemma
vesicles has been shown to generate an electric curren
(317, 73). Since the Na-Ca exchange can move Ca eithe
outwar the operation of the exchanger in cardiac sarcolemmal
vesicles has been shown to generate an electric current
(317, 73). Since the Na-Ca exchange can move Ca either
outward or inward depending on the direction and mag-
ni vesicles has been shown to generate an electric curre (317, 73). Since the Na-Ca exchange can move Ca eith outward or inward depending on the direction and ma mitude of the electrochemical gradients for Na⁺ and Ca³ bo (317, 73). Since the Na-Ca exchange can move Ca either outward or inward depending on the direction and magnitude of the electrochemical gradients for Na⁺ and Ca²⁺, both inward and outward carrier currents can be gene nitude of the electrochemical gradients for Na⁺ and Ca²⁺, nitude of the electrochemical gradients for Na⁺ and Ca²⁺,
both inward and outward carrier currents can be gener-
ated during cardiac action potentials (276). However, the
actual reversal potential of the carrier curre both inward and outward carrier currents can be generated during cardiac action potentials (276). However, the actual reversal potential of the carrier current is rapidly displaced toward positive values when $[Ca]$; rises ated during cardiac action potentials (276). However, the actual reversal potential of the carrier current is rapidly displaced toward positive values when [Ca]_i rises during the action potential as a result of calcium r actual reversal potential of the carrier current is rapidly
displaced toward positive values when [Ca], rises during
the action potential as a result of calcium release from
the SR (291, 102, 292, 140). The Na-Ca exchange displaced toward positive values when [Ca], rises during
the action potential as a result of calcium release from
the SR (291, 102, 292, 140). The Na-Ca exchange process
then should carry inward current (i.e., Na moving in the action potential as a result of calcium release from
the SR (291, 102, 292, 140). The Na-Ca exchange process
then should carry inward current (i.e., Na moving in-
ward) during part of the action potential, even at posi the SR (291, 102, 292, 140). The Na-Ca exchange process
then should carry inward current (i.e., Na moving in-
ward) during part of the action potential, even at positive
membrane voltage. Actually, an inward plateau curre then should carry inward current (i.e., Na moving in-
ward) during part of the action potential, even at positive
membrane voltage. Actually, an inward plateau current
that activates more slowly than the inward Ca current ward) during part of the action potential, even at positive
membrane voltage. Actually, an inward plateau current
that activates more slowly than the inward Ca current
 (I_{C_a}) and contributes to the second inward current that activates more slowly than the inward placeau current (I_{ci}) and contributes to the second inward current (I_{si}) has been found in work on single cells (268, 291, 125). Unlike I_{Ca} this slower current is not im (I_{C_a}) and contributes to the second inward current (I_{ii})
has been found in work on single cells (268, 291, 125).
Unlike I_{C_a} this slower current is not immediately inhib-
ited by Cd ions, and the suggestion has has been found in work on single cens (200, 251, 125).
Unlike I_{Ca} this slower current is not immediately inhibited by Cd ions, and the suggestion has been made that
it is a Na-Ca exchange current (I_{NaCa}) . This current tions IV B 4 and IV A). Since during a normal twitch the intracellular calcium may rise to values even greater the intracellular calcium may rise to values even greater

surprising that a similar current is activated during normal electrical activity and contributes to the slower phase CALCIUM MOBILIZATION AND CARD
than that occurring during aftercontractions, it is not
surprising that a similar current is activated during nor-
mal electrical activity and contributes to the slower phase
of I_{ai} , corres than that occurring during aftercontractions, it is not
surprising that a similar current is activated during nor-
mal electrical activity and contributes to the slower phase
of I_{ai} , corresponding to a net outward flow than that occurring during aftercontractions, it is not
surprising that a similar current is activated during nor-
mal electrical activity and contributes to the slower phase
of I_{ai} , corresponding to a net outward flow surprising that a similar current is activated during nor-
mal electrical activity and contributes to the slower phase
of I_{ai} , corresponding to a net outward flow of calcium
from the cell. Thereby the Na-Ca exchange mec mal electrical activity and contributes to the slower phase
of I_{si}, corresponding to a net outward flow of calcium
from the cell. Thereby the Na-Ca exchange mechanism
can contribute both to electrical activity and to the from the cell. Thereby the Na-Ca exchange mechanism
can contribute both to electrical activity and to the
maintenance of calcium balance during rhythmic activity
of the heart (292; see also section VI B).
B. Calcium Uptak

of the heart (292; see also section VI B).
 B. Calcium Uptake

Ca uptake by the exchanger will take place if the intenance of calcium balance during rhythmic activity
the heart (292; see also section VI B).
Calcium Uptake
Ca uptake by the exchanger will take place if the
ectrochemical gradient for Na is reduced, especially if of the heart (292; see also section VI B).

B. Calcium Uptake

Ca uptake by the exchanger will take place if the

electrochemical gradient for Na is reduced, especially if

the Ca gradient is not reduced as during the intr B. Calcium Uptake
Ca uptake by the exchanger will take place if the
electrochemical gradient for Na is reduced, especially if
the Ca gradient is not reduced as during the intracellular
Ca transient after Ca release from th B. Calcium Uptake
Ca uptake by the exchanger will take place if the
electrochemical gradient for Na is reduced, especially if
the Ca gradient is not reduced as during the intracellular
Ca transient after Ca release from th Ca uptake by the exchanger will take place if the
electrochemical gradient for Na is reduced, especially if
the Ca gradient is not reduced as during the intracellular
Ca transient after Ca release from the SR (see above,
s the Ca gradient is not reduced as during the intracellular
Ca transient after Ca release from the SR (see above,
section V A). Therefore, the interval between the con-
tractions will be favorable for Ca uptake through the
 the Ca gradient is not reduced as during the intracellular Ca transient after Ca release from the SR (see above, section V A). Therefore, the interval between the contractions will be favorable for Ca uptake through the e Ca transient after Ca release from the SR (see above,
section V A). Therefore, the interval between the con-
tractions will be favorable for Ca uptake through the
exchanger in the case of an increased intracellular so-
di section V A). Therefore, the interval between the contractions will be favorable for Ca uptake through the exchanger in the case of an increased intracellular so-
dium-activity, a_{Na}^i . Lipp and Pott (243) observed, tractions will be favorable for Ca uptake through the exchanger in the case of an increased intracellular so-
dium activity, a_{Na}^i . Lipp and Pott (243) observed, in
isolated cardiac cells, I_{NaCa} in the outward dire exenanger in the case of an increased intracentual so-
dium activity, $a_{N_a}^i$. Lipp and Pott (243) observed, in
isolated cardiac cells, $I_{N_aC_a}$ in the outward direction dur-
ing rest at a holding potential of -50 mV isolated cardiac cells, I_{Naca} in the outward direction during rest at a holding potential of -50 mV, indicating a
net Ca²⁺ influx. The concentration of intracellular so-
dium was kept constant at 20 mmol/liter and th ing rest at a holding potential of -50 mV, indicating a
net Ca^{2+} influx. The concentration of intracellular so-
dium was kept constant at 20 mmol/liter and that of
 Ca^{2+} at 50 nmol/liter; the calculated reversal pote net Ca²⁺ influx. The concentration of intracellular so-
dium was kept constant at 20 mmol/liter and that of Ca.
Ca_i²⁺ at 50 nmol/liter; the calculated reversal potential, mn
E_{NaCa}, under these conditions was -86 m dium was kept constant at 20 mmol/liter and that of Ca_i^{2+} at 50 nmol/liter; the calculated reversal potential, E_{NaCa} , under these conditions was -86 mV. Ca uptake by the exchanger opposes the spontaneous Ca leak fr Ca_i^{2+} at 50 nmol/liter; the calculated reversal potential, mmol
E_{NaCa}, under these conditions was -86 mV. Ca uptake by to 1:
the exchanger opposes the spontaneous Ca leak from the mmo
SR and leads to an increase in s E_{NaCa} , under these conditions was -86 mV. Ca uptake
the exchanger opposes the spontaneous Ca leak from
SR and leads to an increase in stored Ca, to a grea
amount of Ca released during depolarization, and to
increas the exchanger opposes the spontaneous Ca leak from the SR and leads to an increase in stored Ca, to a greater amount of Ca released during depolarization, and to an increased rate of force development of the early co SR and leads to an increase in stored Ca, to a greater
amount of Ca released during depolarization, and to an
increased rate of force development of the early contrac-
tion component (see section III A). The importance of
 amount of Ca released during depolarization, and to an increased rate of force development of the early contraction component (see section III A). The importance of inot the reduction of both the concentration (chemical) tion component (see section III A). The importance of inotropic effects of a number of these toxins have been
the reduction of both the concentration (chemical) gra-
dient and the electrical gradient of Na is illustrated the reduction of both the concentration (chemical) gradient and the electrical gradient of Na is illustrated in fig. 7 which shows the inotropic effectiveness of changes in a_{Na}^i at different resting membrane potential dient and the electrical gradient of Na is illustrated
fig. 7 which shows the inotropic effectiveness of chan
in a_{Na}^i at different resting membrane potentials (96). T
increase in a_{Na}^i was obtained through Na pump fig. 7 which shows the inotropic effectiveness of changes
in $a_{N_a}^i$ at different resting membrane potentials (96). The
increase in $a_{N_a}^i$ was obtained through Na pump inhibition
by ouabain. The inotropic effect in r in a_{Na}^i at different resting membrane potentials (96). The
increase in a_{Na}^i was obtained through Na pump inhibition
by ouabain. The inotropic effect in rested state contrac-
tions produced at comparable values of increase in a_{Na}^{i} was obtained through Na pump inhibition
by ouabain. The inotropic effect in rested state contractions
produced at comparable values of a_{Na}^{i} was increased
by a factor of approximately ten after t by ouabain. The inotropic effect in rested state contrac-
tions produced at comparable values of a_{Na}^2 was increased
by a factor of approximately ten after the cell membrane
 32
depolarized from -102 V to -65 mV w tions produced at comparable values of a_{Na}^{i} was increased by a factor of approximately ten after the cell membrane 33
depolarized from -102 V to -65 mV with the increase of 10
K from 2.4 to 12 mmol/liter. While by a factor of approximately ten after the cell membrane 32
depolarized from -102 V to -65 mV with the increase of 10
K from 2.4 to 12 mmol/liter. While Na influx and the itic
counter-current Ca efflux are reduced depolarized from $-102 \times 10 - 66$ mV with the increase of low
K from 2.4 to 12 mmol/liter. While Na influx and the itive
counter-current Ca efflux are reduced with decreases of lula
the resting membrane potential, the oppo counter-current Ca efflux are reduced with decreases of the resting membrane potential, the opposite fluxes (Nefflux-Ca influx) are stimulated. With the alterations of flux ratios, more intracellular Ca becomes available i the resting membrane potential, the opposite fluxes (Na $\frac{1}{2}$ influx) are stimulated. With the alterations of flux ratios, more intracellular Ca becomes available in the release sites of the SR for the subsequent cont efflux-Ca influx) are stimulated. With the alterations of flux ratios, more intracellular Ca becomes available in the release sites of the SR for the subsequent contraction. The dependence of the inotropic effectiveness o flux ratios, more intracellular Ca becomes available in the release sites of the SR for the subsequent contraction The dependence of the inotropic effectiveness of the intracellular sodium activity on the membrane potenti The dependence of the inotropic effectiveness of the intracellular sodium activity on the membrane potential in is unlikely to be influenced by Na^+/H^+ exchange across reveardiac muscle membranes, since this is elect intracellular sodium activity on the membrane potential
is unlikely to be influenced by Na^+/H^+ exchange across
cardiac muscle membranes, since this is electroneutral $C(90)$. During hyperpolarization (2.4 mmol of K/lite is unlikely to be influenced by Na^+/H^+ exchange across revicardiac muscle membranes, since this is electroneutral Ca^2
(90). During hyperpolarization (2.4 mmol of K/liter), Ca ref.
influx via Na-Ca exchange is cardiac muscle membranes, since this is ele
(90). During hyperpolarization (2.4 mmol of H
influx via Na-Ca exchange is presumably smal
in extracellular Ca, therefore, was quite ine
contrast to the situation at high K (fig. 0). During hyperpolarization (2.4 mmol of K/liter), Ca ref.
flux via Na-Ca exchange is presumably small. A change (71 extracellular Ca, therefore, was quite ineffective in lem
ntrast to the situation at high K (fig. 7).

influx via Na-Ca exchange is presumably small. A change (71
in extracellular Ca, therefore, was quite ineffective in len
contrast to the situation at high K (fig. 7). μ m
An increase of intracellular sodium concentratio in extracellular Ca, therefore, was quite ineffective
contrast to the situation at high K (fig. 7).
An increase of intracellular sodium concentration c:
be achieved not only by inhibiting the sodium pump wi
cardioactive st contrast to the situation at high K (fig. 7).

An increase of intracellular sodium concentration can

be achieved not only by inhibiting the sodium pump with

cardioactive steroids or by reducing extracellular potas-

siu An increase of intracellular sodium concentration can
be achieved not only by inhibiting the sodium pump with
cardioactive steroids or by reducing extracellular potas-
sium concentration (106), but also through an increase

FIG. 7. Dependence of the inotropic effectiveness of $a_{N_a}^1$ on K and
Ca. Values below the dashed line were obtained in the presence of 2.4
mmol/liter of K and 0.3 μ mol/liter of ouabain; values above correspond
to 12 as the medical control of the value after the value after the values above correspond to 12.0 mmol/liter of K, 3 μ mol/liter of ouabain, and 1.2 (O) or 3.2 mmol/liter of Ca ([®]). *Ordinates*, force of test contractions scale. Adapted: Ordinates, force of test contractions every 16 min as the percentage of the value after the initial equilibration period at 1-Hz stimulation frequency, log scale; *abscissae*, a_{N_a} in mmol/liter, log sca

1-Hz sumulation frequency, log scale; abscissae, a_{i_4} in mmol/liter, i
scale. Adapted from Ebner et al. (96). Bars, SE.
inotropic effects of a number of these toxins have bee
analyzed: ceveratrum alkaloids (veratrine, reflects of a number of these toxins have been
inotropic effects of a number of these toxins have been
analyzed: ceveratrum alkaloids (veratrine, ref. 174; ver-
atridine, ref. 170; germitrine, ref. 171); batrachotoxin,
ref inotropic effects of a number of these toxins have been
analyzed: ceveratrum alkaloids (veratrine, ref. 174; ver-
atridine, ref. 170; germitrine, ref. 171); batrachotoxin,
ref. 172; aconitine, ref. 169; the grayanotoxins (analyzed: ceveratrum alkaloids (veratrine, ref. 174
atridine, ref. 170; germitrine, ref. 171); batracho
ref. 172; aconitine, ref. 169; the grayanotoxins (2,
and certain polypeptide animal toxins (314). Th
dence in support entrical in the solution of the interest are coupled to the increase of the increase of $\frac{1}{2}$ and $\frac{1}{2$ has been compiled in a series of reviews (314). The evidence in support of the theory that the sodium-dependent inotropic effects are coupled to the increase in a_{Na} has been compiled in a series of reviews (325, 234, 32 and certain polypeptice animal toxins (314). The evidence in support of the theory that the sodium-dependent inotropic effects are coupled to the increase in a_{Na} has been compiled in a series of reviews (325, 234, 32, dence in support of the theory that the sodium-dependent inotropic effects are coupled to the increase in a_N^i has been compiled in a series of reviews (325, 234, 32, 1 321, 166). It has been found recently that stimula has been compiled in a series of reviews $(325, 234, 32, 1, 321, 166)$. It has been found recently that stimulation of low-affinity cardiac muscarinic receptors produces a positive inotropic effect parallel to an increase 321, 166). It has been found recently the
low-affinity cardiac muscarinic receptors
itive inotropic effect parallel to an incredular Na⁺ activity (221, 222) and leading
intracellular Ca²⁺ concentration (223).
NH_E Se low-affinity cardiac muscarinic receptors produces a positive inotropic effect parallel to an increase of intracel-
lular Na⁺ activity (221, 222) and leading to a rise of free
intracellular Ca²⁺ concentration (223).
V

A. Ca2-Transport ATPase of the Sarcolemma

tracellular Ca²⁺ concentration (223).

VI. The Sarcolemmal Calcium Pump
 Ca^{2+} -Transport ATPase of the Sarcolemma

A plasma membrane-localized Ca²⁺ transport system

heart muscle mediates an active efflux of Ca²⁺ **VI. The Sarcolemmal Calcium Pump**
A. Ca^{2+} -Transport ATPase of the Sarcolemma
A plasma membrane-localized Ca^{2+} transport system
in heart muscle mediates an active efflux of Ca^{2+} (for
reviews, see refs. 371 and 30 A. Ca^{2+} -Transport ATPase of the Sarcolemma

A plasma membrane-localized Ca^{2+} transport system

in heart muscle mediates an active efflux of Ca^{2+} (for

reviews, see refs. 371 and 306). This ATP-dependen
 Ca^{2+} -p A plasma membrane-localized Ca^{2+} transport system
in heart muscle mediates an active efflux of Ca^{2+} (for
reviews, see refs. 371 and 306). This ATP-dependent
 Ca^{2+} -pumping system (like that of the red cell membrane in heart muscle mediates an active efflux of Ca^{2+} (for
reviews, see refs. 371 and 306). This ATP-dependent
 Ca^{2+} -pumping system (like that of the red cell membrane,
ref. 340) requires the presence of Mg^{2+} in the reviews, see refs. 371 and 306). This ATP-dependent Ca^{2+} -pumping system (like that of the red cell membrane, ref. 340) requires the presence of Mg^{2+} in the medium (71). The Ca^{2+} transport ATPase of dog heart sar Ca⁻⁻-pumping system (like that of the red cell memorane,
ref. 340) requires the presence of Mg^{2+} in the medium
(71). The Ca²⁺ transport ATPase of dog heart sarco-
lemma possesses an apparent K_m (Ca²⁺) of 0.3 t (71). The Ca²⁺ transport ATPase of dog heart sarco-
lemma possesses an apparent K_m (Ca²⁺) of 0.3 to 1.0
 μ mol/liter when saturated with the activator calmodulin
(72, 232, 229). Its depletion results in the transit lemma possesses an apparent K_m (Ca^{2+}) of 0.3 to 1.0 μ mol/liter when saturated with the activator calmodulin (72, 232, 229). Its depletion results in the transition of the Ca²⁺-pumping ATPase to a low Ca²⁺ affi μ mol/liter when saturated with the activator calmodulin (72, 232, 229). Its depletion results in the transition of the Ca²⁺-pumping ATPase to a low Ca²⁺ affinity state $(K_m \sim 20 \ \mu m o l/liter$; ref. 74). The catalytic sub the Ca²⁺-pumping ATPase to a low Ca²⁺ affinity state $(K_m \sim 20 \text{ }\mu\text{mol/liter}$; ref. 74). The catalytic subunit of the cyclic AMP-dependent protein kinase stimulates the Ca²⁺-ATPase, primarily by increasing its affinity

aspet

aspet

To evaluate the effectiveness of the sarcolemmal cal-
cium pump in reducing cellular calcium in the resting B. Relation to the Calcium Pump of the Sarcoplasmic or
Reticulum in Ventricular and Atrial Muscle gr
To evaluate the effectiveness of the sarcolemmal cal-
cium pump in reducing cellular calcium in the resting re
muscle, so Reticulum in Ventricular and Atrial Muscle
To evaluate the effectiveness of the sarcolemmal cal-
cium pump in reducing cellular calcium in the resting
muscle, some quantitative aspects should be considered
in relation to To evaluate the enectiveness of the sarcolemmal calcium pump in reducing cellular calcium in the resting remuscle, some quantitative aspects should be considered prior in relation to the Ca²⁺-ATPase of the SR which comp in relation to the Ca²⁺-ATPase of the SR which competes
with the sarcolemmal calcium pump for Ca²⁺ leaking into
the cytoplasm from both the SR and the extracellular
space. In contrast to that of the sarcolemma, the Ca in relation to the Ca²⁺-ATPase of the SR which competes
with the sarcolemmal calcium pump for Ca²⁺ leaking into
the cytoplasm from both the SR and the extracellular
space. In contrast to that of the sarcolemma, the Ca with the sarcolemmal calcium pump for Ca^{2+} leaking into
the cytoplasm from both the SR and the extracellular
space. In contrast to that of the sarcolemma, the Ca^{2+}
pump protein of canine cardiac SR constitutes 35 to the cytoplasm from both the SR and the extracellular space. In contrast to that of the sarcolemma, the Ca²⁺ or pump protein of canine cardiac SR constitutes 35 to 40% of the total SR protein (75). In reconstituted vesic space. In contrast to that of the sarcolemma, the Ca^{2+}
pump protein of canine cardiac SR constitutes 35 to 40%
of the total SR protein (75). In reconstituted vesicles
(182), it is half-maximally activated at 0.5 μ mo pump protein of canine cardiac SR constitutes 35 to 40%
of the total SR protein (75). In reconstituted vesicles
(182), it is half-maximally activated at 0.5 μ mol/liter of
Ca²⁺, a value quite similar to that reported of the total SR protein (75). In reconstituted vesicles rat (182), it is half-maximally activated at 0.5 μ mol/liter of the Ca²⁺, a value quite similar to that reported for the sarcolemmal pump in situ. The amount of (182), it is half-maximally activated at 0.5 μ mol/liter of the Ca²⁺, a value quite similar to that reported for the sarcelemmal pump in situ. The amount of available Ca²⁺ Unultimately achieved in cardiac muscle at Ca^{2+} , a value quite similar to that reported for the sar-
colemmal pump in situ. The amount of available Ca^{2+}
ultimately achieved in cardiac muscle at rest will then
depend on the quantitative relation between the t lemmal pump in situ. The amount of available Ca^{2+}
timately achieved in cardiac muscle at rest will then
pend on the quantitative relation between the two
mpeting Ca^{2+} ATPases in the cell.
The existing stereometric m

The existing stereometric measurements show (table section III A), appear without delay after stimulation,
2) that there are great differences in the volume fractions they are presumably activated by calcium previously
and depend on the quantitative relation between the two
depend on the quantitative relation between the two
competing Ca²⁺ ATPases in the cell.
The existing stereometric measurements show (table
2) that there are great diffe

ER
animal species but also between ventricular and atrial
tissues of the same species. As has been pointed out by ER
animal species but also between ventricular and atrial
tissues of the same species. As has been pointed out by
Sommer and Johnson (364), the SR is remarkably prom-ER
animal species but also between ventricular and atr
tissues of the same species. As has been pointed out
Sommer and Johnson (364), the SR is remarkably pro
inent in atrial fibers. The relation of total SR volume animal species but also between ventricular and atrial tissues of the same species. As has been pointed out by Sommer and Johnson (364), the SR is remarkably prominent in atrial fibers. The relation of total SR volume to t tissues of the same species. As has been pointed out b Sommer and Johnson (364), the SR is remarkably prom
inent in atrial fibers. The relation of total SR volume the myofibril fraction is considerably higher in the atri
t commer and bomison (504), the Srt is remarkably prom-
inent in atrial fibers. The relation of total SR volume to
the myofibril fraction is considerably higher in the atria
than in the ventricles. This is in contrast to the inent in atrial fibers. The relation of total SR volume to
the myofibril fraction is considerably higher in the atria
than in the ventricles. This is in contrast to the mito-
chondrial volume fraction which amounts, in mou the myofibril fraction is considerably higher in the atrival than in the ventricles. This is in contrast to the mit chondrial volume fraction which amounts, in mountatria, to only one-half that of the ventricle (50). Thigh chan in the ventrices. This is in contrast to the inflo-
chondrial volume fraction which amounts, in mouse
atria, to only one-half that of the ventricle (50). The
higher volume fraction of the SR in atrial muscle corre-
s enondrial volume fraction which amounts, in mouse
atria, to only one-half that of the ventricle (50). The
higher volume fraction of the SR in atrial muscle corre-
sponds to the finding that the total calcium content of
the atria, to only one-half that of the ventricle (50). The higher volume fraction of the SR in atrial muscle corresponds to the finding that the total calcium content of the atria of all species studied (guinea pig, rat, and higher volume fraction of the SR in atrial muscle corre-
sponds to the finding that the total calcium content of
the atria of all species studied (guinea pig, rat, and cat)
is significantly higher than that of the ventric sponds to the finding that the total calcium content of
the atria of all species studied (guinea pig, rat, and cat)
is significantly higher than that of the ventricles (138).
When $[Ca^{2+}]_o$ is increased, the cellular cal the atria of an species studied (guinea pig, rat, and cat)
is significantly higher than that of the ventricles (138).
When $[Ca^{2+}]_o$ is increased, the cellular calcium content
of atrial muscle varies in proportion to $[Ca$ Solutionally inglef than that of the ventities (156
When $[Ca^{2+}]_o$ is increased, the cellular calcium conter
of atrial muscle varies in proportion to $[Ca^{2+}]_o$, whereather
that of ventricular muscle remains fairly const when $[\text{Ca}]_0$ is increased, the central reactum content
of atrial muscle varies in proportion to $[\text{Ca}^{2+}]_0$, whereas
that of ventricular muscle remains fairly constant (138).
This indicates that the SR in the atria ef of atrial muscle varies in proportion to $[Ca^{2+}]_0$, whereas
that of ventricular muscle remains fairly constant (138).
This indicates that the SR in the atria effectively com-
petes in calcium sequestration with the sarco that of ventricular muscle remains fairly constant (138).
This indicates that the SR in the atria effectively com-
petes in calcium sequestration with the sarcolemmal Ca²⁺
pump. The higher SR fraction with a greater loa This indicates that the Srt in the atria enectively competes in calcium sequestration with the sarcolemmal Ca^{2+} pump. The higher SR fraction with a greater loading capacity for calcium is apparently essential for the s pump. The higher SR fraction with a greater loading capacity for calcium is apparently essential for the special function of the atria whose contractions precede the onset of ventricular contractions. This is achieved by g capacity for calcium is apparently essential for the special function of the atria whose contractions precede the onset of ventricular contractions. This is achieved by greater velocities and briefer durations of atrial m cial function of the atria whose contractions precede the
onset of ventricular contractions. This is achieved by
greater velocities and briefer durations of atrial muscle
contractions (54, 217, 386) for which a greater cal onset of ventricular contractions. This is achieved by
greater velocities and briefer durations of atrial muscle
contractions (54, 217, 386) for which a greater calcium
release and uptake capacity of the SR seem to be a
p greater velocities and briefer durations of atrial muscle contractions (54, 217, 386) for which a greater calcium release and uptake capacity of the SR seem to be a prerequisite. The inequality of their cellular calcium co contractions (54, 217, 386) for which a greater calcium
release and uptake capacity of the SR seem to be a
prerequisite. The inequality of their cellular calcium
content is probably responsible for other functional dif-
fe release and uptake capacity of the SR seem to be a
prerequisite. The inequality of their cellular calcium
content is probably responsible for other functional dif-
ferences between the two kinds of cardiac muscle, such
as prerequisite. The inequality of their cellular calciu
content is probably responsible for other functional d
ferences between the two kinds of cardiac muscle, su
as the duration of the action potential and the magnitu
of r content is probably responsible for other functional differences between the two kinds of cardiac muscle, such as the duration of the action potential and the magnitude of rested-state contractions. Consistent with the imp ferences between the two kinds of cardiac muscle, such as the duration of the action potential and the magnitude of rested-state contractions. Consistent with the importance of intracellular calcium for the short plateau d as the duration of the action potential and the magnitude
of rested-state contractions. Consistent with the impor-
tance of intracellular calcium for the short plateau du-
ration of the atrial action potential is the demon tance of intracellular calcium for the short plateau duration of the atrial action potential is the demonstration that, in Ca-poor solutions, the atrial action potential becomes quite similar to that of a ventricular fiber that, in Ca-poor solutions, the atrial action potential becomes quite similar to that of a ventricular fiber (165).
Unlike cardiac ventricles of most species, mammalian atria are distinguished by strong rested state contra ration of the atrial action potential is the demonstration
that, in Ca-poor solutions, the atrial action potential
becomes quite similar to that of a ventricular fiber (165).
Unlike cardiac ventricles of most species, mamm that, in Ca-poor solutions, the atrial action potential
becomes quite similar to that of a ventricular fiber (165).
Unlike cardiac ventricles of most species, mammalian
atria are distinguished by strong rested state contra becomes quite similar to that of a ventricular fiber (165).
Unlike cardiac ventricles of most species, mammalian
atria are distinguished by strong rested state contractions
(225, 213). Since these contractions, in contrast Unlike cardiac ventricles of most species, mammalia
atria are distinguished by strong rested state contraction
(225, 213). Since these contractions, in contrast to th
late appearing rested state contractions of ventricles atria are distinguished by strong rested state contractions
(225, 213). Since these contractions, in contrast to the
late appearing rested state contractions of ventricles (see
section III A), appear without delay after st late appearing rested state contractions of ventricles (see

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

TABLE 2 Stereology of cardiac cell components								
	Mouse*			Rat. left	Lizzard		Frog _‡	
	Right atrium	Left atrium	Left ventricle	ventriclet	Atrium	Ventricle	Atrium	Ventricle
SR volume (total %)	1.76	1.73	0.88\$	3.5	1.22	0.69 \$	0.56	0.38
SR surface area $(\mu m^2/\mu m^3$ cell)	1.687	1.576	0.896 §	1.22	0.914	0.503\$	0.459	0.277 §
Plasmalemma $Surface + T system$ Plasmalemma $(\mu m^2/\mu m^3$ cell)	0.694	0.747	0.667	0.39	1.254	1.143	1.319	1.193
Myofibrils (%)	52.56	52.95	54.32	47.6	41.14	50.05\$	42.38	46.15

 \dagger Ref. 299.
 \dagger Ref. 48.
§ Difference significant from atrium $(P < 0.05)$.

CALCIUM MOBILIZATION AND CART
The calcium content of the atrial SR will probably not
completely uninfluenced by calcium leakage during CALCIUM MOBILIZATION AND CARDI
The calcium content of the atrial SR will probably not
long rest periods. But the remaining calcium content is wi CALCIUM MOBILIZATION AND CARDI
The calcium content of the atrial SR will probably not
13
the completely uninfluenced by calcium leakage during hig
tong rest periods. But the remaining calcium content is wivery likely restr The calcium content of the atrial SR will probably not 13
be completely uninfluenced by calcium leakage during hig
long rest periods. But the remaining calcium content is wit
very likely restricted to the release compartme be completely uninfluenced by calcium leakage during hilong rest periods. But the remaining calcium content is wivery likely restricted to the release compartments of the Tijunctional SR, whereas the larger parts of the SR long rest periods. But the remaining calcium content
very likely restricted to the release compartments of t
junctional SR, whereas the larger parts of the SR (fr
or longitudinal SR) probably contain relatively litt
calciu very likely restricted to the release compartments of the junctional SR, whereas the larger parts of the SR (free
or longitudinal SR) probably contain relatively little
calcium. This may be deduced from the general experijunctional SR, whereas the larger parts of the SR (free ce
or longitudinal SR) probably contain relatively little un
calcium. This may be deduced from the general experi-
litence that the strong, early appearing, rested st or longitudinal SR) probably contain relatively little ured calcium. This may be deduced from the general experi-
litence that the strong, early appearing, rested state con-
traction is, at a higher stimulation frequency, calcium. This may be deduced from the general experience that the strong, early appearing, rested state contraction is, at a higher stimulation frequency, followed by contractions which rapidly (in 1 to 3 beats) decline in ence that the strong, early appearing, rested state con-
traction is, at a higher stimulation frequency, followed ul
by contractions which rapidly (in 1 to 3 beats) decline in pi
strength, before the force of contraction g traction is, at a higher stimulation frequency, followed ulter by contractions which rapidly (in 1 to 3 beats) decline in pig strength, before the force of contraction gradually in-
creases again until its frequency-depend by contractions which rapidly (in 1 to 3 beats) decline
strength, before the force of contraction gradually
creases again until its frequency-dependent steady st
is reached (225, 38; for review, see ref. 213). The ra
loss strength, before the force of contraction gradually in-
creases again until its frequency-dependent steady state
is reached (225, 38; for review, see ref. 213). The rapid
 t loss of contractile strength after the rested creases again until its frequency-dependent steady state
is reached (225, 38; for review, see ref. 213). The rapid
loss of contractile strength after the rested state contrac-
tions has been described by Blinks and Koch-W is reached (225, 38; for review, see ref. 213). The rapid loss of contractile strength after the rested state contractions has been described by Blinks and Koch-Weser (38 as a consequence of the predominance of a large neg loss of contractile strength after the rested state contrac-
tions has been described by Blinks and Koch-Weser (38) lations
as a consequence of the predominance of a large negative ular
inotropic effect of activation (NIEA tions has been described by Blinks and Koch-Weser (38) lat as a consequence of the predominance of a large negative ultimotropic effect of activation (NIEA) over a small positive inotropic effect of activation (PIEA). Acco as a consequence of the predominance of a large negative uniotropic effect of activation (NIEA) over a small positive inotropic effect of activation (PIEA). According to athese authors, the steady-state force of contractio inotropic effect of activation (NIEA) over a small positive inotropic effect of activation (PIEA). According to after these authors, the steady-state force of contraction is latite determined by the cumulation of these two tive inotropic effect of activation (PIEA). According
these authors, the steady-state force of contraction
determined by the cumulation of these two oppos
effects, of which the small PIEA disappears slowly, a
the larger NI tion. termined by the cumulation of these two opposing
fects, of which the small PIEA disappears slowly, and
e larger NIEA disappears rapidly after each contrac-
n.
An explanation for the rapid decline of the contractile
rength

effects, of which the small PIEA disappears slowly, and
the larger NIEA disappears rapidly after each contraction.
An explanation for the rapid decline of the contractile
strength after the rested stated contraction (and t An explanation for the rapid decline of the contractile
strength after the rested stated contraction (and thereby
for NIEA) would be a calcium extrusion from the cell
through the sarcolemma via Na-Ca exchange. If a con-
th tion.

An explanation for the rapid decline of the contractile

strength after the rested stated contraction (and thereby

for NIEA) would be a calcium extrusion from the cell

through the sarcolemma via Na-Ca exchange. I An explanation for the rapid decline of the contractile
strength after the rested stated contraction (and thereby
for NIEA) would be a calcium extrusion from the cell
through the sarcolemma via Na-Ca exchange. If a con-
s strength after the rested stated contraction (and thereby
for NIEA) would be a calcium extrusion from the cell
through the sarcolemma via Na-Ca exchange. If a con-
siderable part of the amount of Ca^{2+} released in the
r for NIEA) would be a calcium extrusion from the cell
through the sarcolemma via Na-Ca exchange. If a con-
siderable part of the amount of Ca^{2+} released in the
rested state contraction is indeed extruded during the
calc through the sarcolemma via Na-Ca exchange. If a considerable part of the amount of Ca^{2+} released in the rested state contraction is indeed extruded during the calcium transient (see section V A), the remaining part of siderable part of the amount of Ca^{2+} released in the rested state contraction is indeed extruded during the calcium transient (see section V A), the remaining part of the released calcium may not suffice to refill an e rested state contraction is indeed extruded during the
calcium transient (see section V A), the remaining part
of the released calcium may not suffice to refill an empty
has
accoplasmic reticulum with a great uptake capac of the released calcium may not suffice to refill an empty
sarcoplasmic reticulum with a great uptake capacity.
Activator calcium would then become available again
only according to the slowly cumulating activity-depend-
 of the released calcium may not suffice to refill an empty
sarcoplasmic reticulum with a great uptake capacity.
Activator calcium would then become available again
only according to the slowly cumulating activity-depend-
 sarcoplasmic reticulum with a great uptake capacity.
Activator calcium would then become available again
only according to the slowly cumulating activity-depend-
ent Ca²⁺ uptake from the extracellular space (PIEA).
Evid Activator calcium would then become available again
only according to the slowly cumulating activity-depend-
ent Ca²⁺ uptake from the extracellular space (PIEA).
Evidence in support of the idea that Ca²⁺ extrusion
thr only according to the slowly cumulating activity-dependent Ca^{2+} uptake from the extracellular space (PIEA).
Evidence in support of the idea that Ca^{2+} extrusion through Na-Ca exchange is partly responsible for the lo ent Ca²⁺ uptake from the extracellular space (PIEA).
Evidence in support of the idea that Ca²⁺ extrusion
through Na-Ca exchange is partly responsible for the
loss in contractile strength was obtained in experiments
wi through Na-Ca exchange is partly responsible for the loss in contractile strength was obtained in experiments with guinea pig papillary muscles in magnesium-free solution (399a). These muscles have a distinct atrium-like f through Na-Ca exchange is partly responsible for the
loss in contractile strength was obtained in experiments
with guinea pig papillary muscles in magnesium-free
solution (399a). These muscles have a distinct atrium-
like solution (399a). These muscles have a distinct atrium-
like frequency-force relationship with strong rested state
contractions (see below). The duration of the transmem-
brane action potential accompanying the rested state with guinea pig papillary muscles in magnesium-free
solution (399a). These muscles have a distinct atrium-
like frequency-force relationship with strong rested state
contractions (see below). The duration of the transmensolution (399a). These muscles have a distinct atrium-
like frequency-force relationship with strong rested state AMP (contractions (see below). The duration of the transmem-
brane action potential accompanying the rested like frequency-force relationship with strong rested state
contractions (see below). The duration of the transmem-
brane action potential accompanying the rested state
contraction was longer than that of the following low contractions (see below). The duration of the transmembrane action potential accompanying the rested state radio
contraction was longer than that of the following low actrength contractions. The difference became more mor brane action potential accompanying the rested state
contraction was longer than that of the following low
strength contractions. The difference became more
prominent $(25\% \text{ at } 60\% \text{ repolarization of the action})$
potential, $n = 4$) after t contraction was longer than that of the following low
strength contractions. The difference became more m
prominent (25% at 60% repolarization of the action
potential, $n = 4$) after the sarcolemmal calcium channels
had be strength contractions. The difference became more major mechanism for calcium transport through the sar-
prominent (25% at 60% repolarization of the action
potential, $n = 4$) after the sarcolemmal calcium channels
had bee potential, $n = 4$) after the sarcolemmal calcium channels potential, $n = 4$) after the sarcolemmal calcium channels Na-
had been inhibited with 1 μ mol/liter of nifedipine. These grace
results are interpreted to show that the second inward incr
current (I_{ai}) responsible for t had been inhibited with 1 μ mol/liter of nifedipine. These gresults are interpreted to show that the second inward in current (I_{ai}) responsible for the action potential plateau v during the strong rested state contract results are interpreted to
current (I_{ai}) responsible for
during the strong rested s
a great extent by I_{NaCa} ,
through Na-Ca exchange.
A notable exception to Frent (I_{ai}) responsible for the action potential plateau
ring the strong rested state contraction was carried to
great extent by I_{NaCe} , indicating calcium extrusion
rough Na-Ca exchange.
A notable exception to the usua during the strong rested state contraction was carried to
a great extent by $I_{Nac,a}$, indicating calcium extrusion po
through Na-Ca exchange.
A notable exception to the usual frequency-force rela-
tionship of mammalian ve

a great extent by I_{NaCa} , indicating calcium extrusion
through Na-Ca exchange.
A notable exception to the usual frequency-force rela-
tionship of mammalian ventricular muscle is that of the
rat, which shows strong res

CALCIUM MOBILIZATION AND CARDIAC INOTROPIC MECHANISMS 209
 CALCIUM MOBILIZATION AND CARDIAC INCRETE:
 CALCIUM FOR A FORM This may be causally related to an exceptionally be completely uninfluenced by calcium leakage during high SR volume fraction in the rat ventricle (table 2) long rest periods. But the remaining calcium content is with a consequent high intracellular calcium activity, ve high SR volume fraction in the rat ventricle (table 2) FINAC INOTROPIC MECHANISMS 209
133). This may be causally related to an exceptionally
high SR volume fraction in the rat ventricle (table 2)
with a consequent high intracellular calcium activity. EXECUTE INCOTROPIC MECHANISMS 209
133). This may be causally related to an exceptionally
high SR volume fraction in the rat ventricle (table 2)
with a consequent high intracellular calcium activity.
The reported values of 133). This may be causally related to an exceptionally high SR volume fraction in the rat ventricle (table 2) with a consequent high intracellular calcium activity. The reported values of the intracellular free Ca^{2+} co 133). This may be causally related to an exceptional
high SR volume fraction in the rat ventricle (table with a consequent high intracellular calcium activit
The reported values of the intracellular free Ca^{2+} concentra high SR volume fraction in the rat ventricle (table 2) with a consequent high intracellular calcium activity.
The reported values of the intracellular free Ca²⁺ concentration in resting rat ventricular myocytes, as meas with a consequent high intracellular calcium activity.
The reported values of the intracellular free Ca^{2+} concentration in resting rat ventricular myocytes, as measured with the fluorescent Ca^{2+} indicator quin-2 (in The reported values of the intracellular free Ca²⁺ contration in resting rat ventricular myocytes, as me ured with the fluorescent Ca²⁺ indicator quin-2 (in nm liter: 121 \pm 11, ref. 93; 137.1 \pm 2.6, ref. 310; 18 centration in resting rat ventricular myocytes, as measured with the fluorescent Ca^{2+} indicator quin-2 (in nmol/
liter: 121 \pm 11, ref. 93; 137.1 \pm 2.6, ref. 310; 181 \pm 18,
ref. 349), are considerably higher th ured with the fluorescent Ca²⁺ indicator quin-2 (in nmol/
liter: 121 \pm 11, ref. 93; 137.1 \pm 2.6, ref. 310; 181 \pm 18,
ref. 349), are considerably higher than those in ventric-
ular myocytes of the cat (57 \pm 4 liter: 121 \pm 11, ref. 93; 137.1 \pm 2.6, ref. 310; 181 \pm 18, ref. 349), are considerably higher than those in ventric-
ular myocytes of the cat (57 \pm 4, ref. 93) and the guinea
pig (99.9 \pm 10, ref. 310). Acco ref. 349), are considerably higher than those in ventr
ular myocytes of the cat $(57 \pm 4, \text{ref. } 93)$ and the guin
pig $(99.9 \pm 10, \text{ref. } 310)$. Accordingly, the magnitude
the rested state contraction of the rat ventricle ular myocytes of the cat $(57 \pm 4, \text{ref. } 93)$ and the guinea
pig $(99.9 \pm 10, \text{ref. } 310)$. Accordingly, the magnitude of
the rested state contraction of the rat ventricle declines
when $[Ca]_o$ is reduced, and at low pig (99.9 \pm 10, ref. 310). Accordingly, the magnitude
the rested state contraction of the rat ventricle declin
when [Ca]_o is reduced, and at low Ca²⁺ concentration
the rat myocardium has properties similar to those the rested state contraction of the rat ventricle decline when $[Ca]_o$ is reduced, and at low Ca^{2+} concentratio the rat myocardium has properties similar to those other species with respect to inotropic effects of stin when $[Ca]_o$ is reduced, and at low Ca^{2+} concentrations,
the rat myocardium has properties similar to those of
other species with respect to inotropic effects of stimu-
lation (133). The reverse is seen with guinea pig the rat myocardium has properties similar to those of other species with respect to inotropic effects of stimulation (133). The reverse is seen with guinea pig ventricular muscles kept in magnesium-free solutions. They dev other species with respect to inotropic effects of stimulation (133). The reverse is seen with guinea pig ventricular muscles kept in magnesium-free solutions. They develop strong rested state contractions without a delay lation (133). The reverse is seen with guinea pig ventricular muscles kept in magnesium-free solutions. They develop strong rested state contractions without a delay after stimulation and an atrium-like frequency-force rel ular muscles kept in magnesium-free solutions. They
develop strong rested state contractions without a delay
after stimulation and an atrium-like frequency-force re-
lationship (398), probably as a result of an unfavorable develop strong rested state contractions without a delay
after stimulation and an atrium-like frequency-force re-
lationship (398), probably as a result of an unfavorable
shift in the relation between sarcolemmal calcium p Not an ecritain-incertial
robably as a result
between sarcolem
vii. Conclusions
focused on the ift in the relation between sarcolemmal calcium pump
pacity and passive calcium leak into the cell.
 $VII.$ Conclusions

The review has focused on the central role of an
tracellular calcium store, the sarcoplasmic reticulu

capacity and passive calcium leak into the cell.

VII. Conclusions

The review has focused on the central role of an

intracellular calcium store, the sarcoplasmic reticulum,

in the regulation of mammalian cardiac contrac VII. Conclusions
The review has focused on the central role of an
intracellular calcium store, the sarcoplasmic reticulum,
in the regulation of mammalian cardiac contraction. It
is the amount of calcium released from the S VII. Conclusions
The review has focused on the central role of an
intracellular calcium store, the sarcoplasmic reticulum,
in the regulation of mammalian cardiac contraction. It
is the amount of calcium released from the S The review has focused on the central role of an
intracellular calcium store, the sarcoplasmic reticulum,
in the regulation of mammalian cardiac contraction. It
is the amount of calcium released from the SR after
depolariz intracellular calcium store, the sarcoplasmic reticulum,
in the regulation of mammalian cardiac contraction. It
is the amount of calcium released from the SR after
depolarization which determines the degree of activation
o in the regulation of mammalian cardiac contraction. It
is the amount of calcium released from the SR after
depolarization which determines the degree of activation
of the contractile apparatus. The property of leaking
calc is the amount of calcium released from the SR after
depolarization which determines the degree of activation
of the contractile apparatus. The property of leaking
calcium at a considerable rate during rest makes the
calciu depolarization which determines the degree of activation
of the contractile apparatus. The property of leaking
calcium at a considerable rate during rest makes the
calcium content of the SR extremely labile. On the other
h of the contractile apparatus. The property of leaking
calcium at a considerable rate during rest makes the
calcium content of the SR extremely labile. On the other
hand, the ability of the SR to accumulate calcium leads
t calcium at a considerable rate during rest makes
calcium content of the SR extremely labile. On the ot
hand, the ability of the SR to accumulate calcium le
to the refilling of its stores to an extent that depends
the amoun calcium content of the SR extremely labile. On the other
hand, the ability of the SR to accumulate calcium leads
to the refilling of its stores to an extent that depends on
the amount of calcium made available from the ext hand, the ability of the SR to accumulate calcium leads to the refilling of its stores to an extent that depends on the amount of calcium made available from the extracel-lular space. This offers the common mechanistic bas ways. e amount of calcium made available from the extracelar space. This offers the common mechanistic basis
r a variety of inotropic agents that act in quite different
ys.
According to our present knowledge, calcium enters
e ce

the common mechanistic based of the common mechanistic based for a variety of inotropic agents that act in quite different ways.
According to our present knowledge, calcium ent
the cell mainly during depolarization through for a variety of inotropic agents that act in quite different
ways.
According to our present knowledge, calcium enters
the cell mainly during depolarization through voltage-
dependent channels whose functional availability ways.

According to our present knowledge, calcium enters

the cell mainly during depolarization through voltage-

dependent channels whose functional availability is reg-

ulated by cyclic AMP. Since the cellular content According to our present knowledge, calcium enters
the cell mainly during depolarization through voltage-
dependent channels whose functional availability is reg-
ulated by cyclic AMP. Since the cellular content of cyclic
 the cell mainly during depolarization through voltage-
dependent channels whose functional availability is reg-
ulated by cyclic AMP. Since the cellular content of cyclic
AMP depends on a series of enzymatic steps, initiat dependent channels whose functional availability is regulated by cyclic AMP. Since the cellular content of cyclic AMP depends on a series of enzymatic steps, initiated by receptor stimulation and ending in cyclic AMP degra ulated by cyclic AMP. Since the cellular content of cyclic
AMP depends on a series of enzymatic steps, initiated
by receptor stimulation and ending in cyclic AMP deg-
radation, an increase in cellular calcium uptake may b AMP depends on a series of enzymatic steps, initiated
by receptor stimulation and ending in cyclic AMP deg-
radation, an increase in cellular calcium uptake may be
achieved by interventions that act on any of them. A
major by receptor stimulation and ending in cyclic AMP degradation, an increase in cellular calcium uptake may be achieved by interventions that act on any of them. A major mechanism for calcium transport through the sarcolemma radation, an increase in cellular calcium uptake may leachieved by interventions that act on any of them.
major mechanism for calcium transport through the sa
colemma in both directions consists of an electrochemic
Na-Ca e achieved by interventions that act on any of them. A major mechanism for calcium transport through the sar-
colemma in both directions consists of an electrogenic
Na-Ca exchange which depends on the electrochemical
gradien major mechanism for calcium transport through the sar-
colemma in both directions consists of an electrogenic
Na-Ca exchange which depends on the electrochemical
gradient for Na. A reduction of this gradient leads to
incre colemma in both directions consists of an electrogenic
Na-Ca exchange which depends on the electrochemical
gradient for Na. A reduction of this gradient leads to
increased Ca uptake by the exchanger. Therefore, a great
var Na-Ca exchange which depends on the electrochemical
gradient for Na. A reduction of this gradient leads to
increased Ca uptake by the exchanger. Therefore, a great
variety of agents causing, in one way or another, an
incre gradient for Na. A reduct
increased Ca uptake by the
variety of agents causing
increase in intracellular
positive inotropic effects.
While we believe we un creased Ca uptake by the exchanger. Therefore, a grea
riety of agents causing, in one way or another, an
crease in intracellular sodium activity will produc
sitive inotropic effects.
While we believe we understand, more or

variety of agents causing, in one way or another, an increase in intracellular sodium activity will produce positive inotropic effects.
While we believe we understand, more or less thoroughly, the mechanisms responsible fo increase in intracellular sodium activity will produce
positive inotropic effects.
While we believe we understand, more or less thor-
oughly, the mechanisms responsible for an increase in
cellular calcium uptake, we know, positive inotropic effects.
While we believe we understand, more or less thor-
oughly, the mechanisms responsible for an increase in
cellular calcium uptake, we know, at present, relatively
little about possible pharmacolo

spet

 $\overline{\mathbb{O}}$

PHARM
REV

210 REITER
binding modulator proteins and their quantitative con-
tributions to inotropic effects on cardiac muscle. 210
binding modulator proteins and their quantitative
tributions to inotropic effects on cardiac muscle.
Acknowledgements I am indebted to Drs. John B. Blinks.

Acknowledgments. I am indebted to Drs. John R. Blinks, F. Ebner,
Acknowledgments. **I** am indebted to Drs. John R. Blinks, F. Ebner,
P. Honerjäger, M. Korth, K. Seibel, and W. Vierling for reading the
manuscript and s tributions to inotropic errects on carcuac muscle.

Acknowledgments. I am indebted to Drs. John R. Blinks, F. Ebner,

P. Honerjäger, M. Korth, K. Seibel, and W. Vierling for reading the

manuscript and suggesting improveme Acknowledgments. I am indebted to Drs. John R. Blin P. Honerjäger, M. Korth, K. Seibel, and W. Vierling for careful self and Ms. Christel. Baumgärtel.
I thank Ms. Brigitte Dick and Ms. Christa Baumgärtel.
REFERENCES 1. AKERA, T., AND BRODY, T. M.: The role of Na⁺, K⁺-ATPase in the inotropic action of digitalis. Pharmacol. Rev. 29: 187-220, 1977.

-
- enant NE. Digited DRA and NE. Christa Baumgarter.

REFERENCES

1. AKERA, T., AND BRODY, T. M.: The role of Na⁺, K⁺-ATPase in the inotropic

action of digitalis. Pharmacol. Rev. 29: 187-220, 1977.

2. AKERA, T., KU, D. transmembrane potential, Pharmacol. Rev. 29: 187-220, 1977.

2. AKERA, T., KU, D. D., FRANK, M. BRODY, T. M., AND IWASA, J.: Effects of

grayanotoxin I on cardiac Na⁺, K⁺-adenosine triphosphatase activity,

transmembra grayanotoxin I on cardiac Na⁺, K⁺-adenosine triphosphatase activity,
transmembrane potential, and myocardial contractile force. J. Pharmacol.
Exp. Ther. 199: 247-254, 1976.
3. ALLEN, D. G., EISNER, D. A., NIEMAN, C. J.
-
- Factorial and the U.S. Cond. Cond. 1848: 53P, 1984.

4. ALLEN, D. G., EISNER, D. A., AND ORCHARD, C. H.: Characterization of

cocillations of intracellular calcium concentration in ferret ventricular

muscle. J. Physiol. (
- relationship between intracellular calcium- oncentration in ferret ventricular muscle. J. Physiol. (Lond.) 362: 113-128, 1984.
LLEN, D. G., EISNER, D. A., PIROLO, J. S., AND SMITH, G. L.: The relationship between intracell 6. ALLEN, D. G., EISNER, D. A., PIROLO, J. S., AND SMITH, G. L.: The relationship between intracellular calcium and contraction in calcium-
overloaded ferret papillary muscles. J. Physiol (Lond.) 364: 169-182,
1985.
6. ALL
-
- relationship between intracellular calcium and contraction in calcium-
overloaded ferret papillary muscles. J. Physiol (Lond.) 364: 169-182,
1985.
6. ALLEN, D. G., EISNER, D. A., SMITH, G. L., AND VALDEOLMILLOS, M.: The
ef effects of rapid reduction of extracellular calcium concentration on isolated ferret papillary muscle. J. Physiol. (Lond.) 382: 110P, 1987.
7. ALLEN, D. G., JEWELL, B. R., AND WOOD, E. H.: The rested state contraction and
- Inted ferret papillary muscle. J. Physiol. (Lond.) 382: 110P, 1987.

7. ALLEN, D. G., JEWELL, B. R., AND WOOD, E. H.: The rested state contraction and action potential of cat papillary muscle. J. Physiol. (Lond.) 238:

29P 29P-30P, 1974.

254: 1-17, 1976.

254: 254: ALLEN, D. G., **JEWELL**, B. R., AND WOOD, E. H.: Studies of the contractilities of mammalian myocardium at low rates of stimulation. J. Physiol. (Lond mammalian myocardium at low-8. ALLEN, D. G., JEWELL, B. R., AND WOOD, E. H.: Studies of the contractility
of mammalian myocardium at low rates of stimulation. J. Physiol. (Lond.)
254: 1-17, 1976.
9. ALLEN, D. G., AND KURIHARA, S.: Calcium transients
-
- 327: 79-94, 1982. 11. ANDERSON, T. W., HIRSCH, C., AND KAVALER, F.: Mechanism of activation transients in mammalian cardiac muscle length on intracel-
11. ANDERSON, T. W., HIRSCH, C., AND KAVALER, F.: Mechanism of activation
11. ANDERSON, T
-
- 10. ALLEN, D. G., AND KURIHARA, S.: The effects of mucle length on intracel-
lular calcium transients in mammalian cardiac muscle. J. Physiol. (Lond.)
327: 79-94, 1982.
11. ANDERSON, T. W., HIRSCH, C., AND KAVALER, F.: Mec 12. ARTONI, H., JACOB, R., AND KAUFMANN, R.: Mechanische Reaktionen des
Frosch- und Säugetiermyokards bei Veränderung der Aktionspotential-
Dauer durch konstante Gleichstromimpulse. Pflügers Arch. 306: 33-57,
1969.
ARLOCK,
-
- Frosch- und Säugetiermyokards bei Veränderung der Aktionspotential-

Dauer durch konstante Gleichstromimpulse. Pflügers Arch. 306: 33–57,

1969.

13. ARLOCK, P., AND KATZUNG, B. G.: Effects of sodium substitutes on transie Invard current and tension in guinea-pig and ferret papillary muscle. J.

14. ARONSON, C.Ond.) 368: 106-120, 1985.

16. BAKER, P., AND WIT, A. L.: The effects of caffeine

and ryanodine on the electrical activity of the ca
- and ryanodine on the electrical activity of the canine coronary sinus. J.

16. BARER, P. F., BLAUSTERN, M. P., HODGKIN, A. L., AND STEINHARDT, R.

A.: The influence of calcium on sodium efflux in squid axons. J. Physiol.

- AKER, P. F., BLAUSTEIN, M. P., HODGKIN, A. L., AND STEINHARDT, R.
A.: The influence of calcium on sodium efflux in squid axons. J. Physiol.
(Lond.) 200: 431-458, 1969.
ARCENAS-RUIZ, L., AND WIER, W. G.: Voltage dependence
- 17. BARCENAS-RUIZ, L., AND WIER, W. G.: Voltage dependence of intracellular [Ca²⁺], transients in guinea pig ventricular myocytes. Circ. Res. 61: 148-154, 1987.

17. BARRY, W. H., RASMUSSEN, C. A. F., JR., ISYHIDA, H., A Ca²⁺], transients in guinea pig ventricular myocytes. Circ. Res. 61: 148-154, 1987.
17. BARRY, W. H., RABMUSSEN, C. A. F., JR., ISYHIDA, H., AND BRIDGE, J. H.
B.: External Na-independent Ca extrusion in cultured ventricu 17. BAFSINGTH, H., RASMUSSEN, C. A. F., JR., ISYHIDA, H., AND BRIDGE, J. H.
B.: External Na-independent Ca extrusion in cultured ventricular cells.
Magnitude and functional significance. J. Gen. Physiol. 88: 393-401,
1986.
- Magnitude and functional significance. J. Gen. Physiol. 88: 393-401,
1986.
18. BASSINGTHWAIGHTE, J. B., FRY, C. H., AND MCGUIGAN, J. A. S.: Relation-
ship between internal calcium and outward current in mammalian ven-
tric 10. Distolarithm and calcium and outward current in mammalian verticular muscle; a mechanism for the control of the action potential duration? J. Physiol. (Lond.) 262: 15-37, 1976.
19. BAYLOR, S. M., CHANDLER, W. K., AND M
-
-
- 21. BEAvo, J. A., Rogers, N. L., CROFFORD, O. B., HARDMAN, J. G., Sum-
20. BEAN, B. P.: Two kinds of calcium channels in canine atrial cells. J. Gen.
21. BEAVO, J. A., ROGERS, N. L., CROFFORD, O. B., HARDMAN, J. G., SUTHER 20. BEAN, B. P.: Two kinds of calcium channels in canine atrial cells. J. Gen.
Physiol. 86: 1-30, 1985.
21. BEANO, J. A., ROGERS, N. L., CROFFORD, O. B., HARDMAN, J. G., SUTH-
ERLAND, E. W., AND NEWMAN, E. V.: Effects of x
-
-
- manus and adenosine 3',5'-monophosphate phosphodiseterase scivity.

Mol. Pharmacol. 6: 597-603, 1970.

22. BECKER, E., INGERETSEN, W. R., AND MAYER, S. E.: Electrophysiological

responses of cardiac muscle to isoprotereno potential, membrane currents, and activation of contraction in ventricular
myocardial fibres. J. Physiol. (Lond.) 207: 211–229, 1970.
23a. BELLEMANN, P., FERRY, D., LOBBECKE, F., AND GLOSSMANN, H.: [²H]
Nitrendipine, a p
- REITER
24. BERESEWICZ, A., AND REUTER, H.: The effects of adrenaline and theoph-
24. BERESEWICZ, A., AND REUTER, H.: The effects of mammalian ventricular **ERESEWICZ, A., AND REUTER, H.: The effects of adrenaline and theophylline on action potential and contraction of mammalian ventricular muscle under "rested-state" and "steady-state" stimulation. Naunyn-Schmiedeberg's Arch** 24. BERRIBGE, M., AND REUTER, H.: The effects of adrenaline and theophylline on action potential and contraction of mammalian ventricular muscle under "rested-state" and "steady-state" stimulation. Naunyn-
25. BERRIDGE, M. with on action potential and contraction of mammalian ventricular muscle under "rested-state" and "steady-state" stimulation. Naunyn-Schmiedeberg's Arch. Pharmacol. 301: 99-107, 1977.
Schmiedeberg's Arch. Pharmacol. 301: 9
	- 25. **BERRIDGE, M. J., AND IRVINE, R. F.: Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature (Lond.) 312: 315-321, 1984.
26. BERS, D. M.: Ca influx and sarcoplasmic reticulum Ca release**
	-
	- messenger in cellular signal transduction. Nature (Lond.) 312: 315-321,

	1984.

	26. BERS, D. M.: Ca influx and sarcoplasmic reticulum Ca release in cardiac

	muscle activation during postrest recovery. Am. J. Physiol. 17: H
	- 27. BERS, D. M., AND MACLEOD, K. T.: Cumulative depletions of extracellular calcium in rabbit ventricular muscle monitored with calcium-selective microelectrodes. Circ. Res. 58: 769-782, 1986.

	28. BEYER, T., GANSOHR, N., calcium in rabbit ventricular muscle monitored with calcium-a-
microelectrodes. Circ. Res. 58: 769-782, 1986.
EYER, T., GANSOHR, N., GJORSTRUP, P., AND RAVENS, U.: The ef-
the cardiotonic dihydropyridine derivatives Bay microelectrodes. Circ. Res. 58: 769-782, 1986.

	28. BEYER, T., GANSOHR, N., GJÖRSTRUP, P., AND RAVENS, U.: The effects of

	the cardiotonic dihydropyridine derivatives Bay k 8644 and H160/51 on

	post-rest adaptation of guin **ample for the cardiotonic dihydropyridine derivatives Bay k 8644 and H160/51 on post-rest adaptation of guinea-pig papillary muscles. Naunyn-Schmiedeberg's Arch. Pharmacol. 334: 488-495, 1986.

	IARCHI, C. P.: Effect of ph**
	- by G. B. Weiss, pp. 315-330, Plenum Press, pp. 315-330, Plenum Press, New York, 1978.

	29. BIANCHI, C. P.: Effect of pharmacological agents on calcium store amphibian fast and alow muscles fibers. In Calcium in Drug Action contraction contraction coupling. Can. J. Physiological agents on calcium stores in amphibian fast and slow muscle fibers. *In* Calcium in Drug Action, ed., by G. B. Weiss, pp. 315-330, Plenum Press, New York, 1978.
30. BI
	-
	- by G. B. Weiss, pp. 315-330, Plenum Press, New York, 1978.
30. BIANCHI, C. P.: Introductory remarks: some historical aspects of excitation-contraction coupling. Can. J. Physiol. Pharmacol. 60: 415-416, 1982.
31. BIANCHI, C 30. BIANCHI, C. P.: Introductory remarks: some historical aspects of excitation-
contraction coupling. Can. J. Physiol. Pharmacol. 60: 415-416, 1982.
31. BIANCHI, C. P., NARAYAN, S., AND LAKSHMINARAYANAIAH, N.: Mobilizatio
	- OF CALCIUM STATE STATE IN THE STATE AND NELSON, A. L.: The effect of cyanide on the efflux of calcium from equid axons. J. Phy
	-
	- across cell membranes. Rev. Physiol. Biochem. Pharmacol. 70: 33–82, 1974.
 33. BLAUSTEIN, M. P., AND HODGKIN, A. L.: The effect of cyanide on the efflux of calcium from squid arons. J. Physiol. (Lond.) 200: 497–527, 1969.
	- 33. BLAUSTEIN, M. P., AND HODGKIN, A. L.: The effect of cyanide on the efflux of calcium from squid axons. J. Physiol. (Lond.) 200: 497-527, 1969.
34. BLAUSTEIN, M. P., AND NELSON, M. T.: Sodium-calcium exchange: its role in the regulation of cell calcium. In Membrane Transport of Calcium, ed.
by E. Carafoli, pp. 217-235, Academic Press, London, 1982.
LAYNEY, L., THOMAS, H., MUIR, J., AND HENDERSON, A.: Action of
caffeine on calcium transpo caffeine on calcium transport by isolated fractions of myofibrils, mito-
chondria, and sarcoplasmic reticulum from rabbit heart. Circ. Res. 43:
520-526, 1978.
36. BLINKS, J. R., CAI, Y.-D., AND LEE, N. K. M.: Inositol 1,4
	-
	-
	- 36. BLINKS, J. R., CAI, Y.-D., AND LEE, N. K. M.: Inositol 1,4,5-trisphosphate
causes calcium release in frog skeletal muscle only when transverse tubules
have been interrupted. J. Physiol. (Lond.) 394: 23P, 1987.
37. BLIN LINKS, J. R., AND KOCH-WESER, J.: Analysis of the effects of changes in rate and rhythm upon myocardial contractility. J. Pharmacol. Exp. Ther. 134: 373-389, 1961.
HARRER, G. C., MATTINGLY, P. H., JEWELL, B. R., VANLEEUWEN
	- rate and rhythm upon myocardial contractility. J. Pharmacol. Exp. Ther.
134: 373-389, 1961.
39. BLINES, J. R., MATTINGLY, P. H., JEWELL, B. R., VANLEEUWEN, M.,
HARRER, G. C., AND ALLEN, D. G.: Practical aspects of the use
	- tation of signals. Methods Enzymol. **57: 292-328, 1978.** 40. **BLINKS, J. R., OLSON,** C. B., **JEWELL, B. R., AND BRAVEN', P.: Influence**
	- HARRER, G. C., AND ALLEN, D. G.: Practical aspects of the use of asquorin
as a calcium indicator: assay, preparation, circuingection, and interpre-
tation of signals. Methods Enzymol. 57: 292-328, 1978.
40. BLINKS, J. R., and of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle. Circ. Res. 30: 367-392, 1972.
LINKS, J. R., WIER, W. G., MORGAN, J. P., AND HESS, P.: Regulation of intracellular [Ca⁺ **205-216, Pergamon Press, Oxford, 1982.** Press, Oxford, 1982. Press, Oxford, 1982.

	2013. BLINKS, J. R., WIER, W. G., MORGAN, J. P., AND HESS, P.: Regulation of intracellular [Ca⁺⁺] by cardiotonic drugs. In Advances in P
	- and Therapy II, ed. by H. Yoshida, Y. Hagihara, and S. Ebashi, vol. 3, pp. 205-216, Pergamon Press, Oxford, 1982.
42. BLOOM, S.: Spontaneous rhythmic contraction of separated heart muscle cells. Science (Wash. DC) 167: 172
	-
	- 43. BLOOM, S.: Phylogenetic differences in spontaneous contractility of isolated
heart muscle cells. Comp. Biochem. Physiol. 37: 127-129, 1970.
44. BLOOM, S.: Requirements for spontaneous contractility in isolated adult
ma
	- 12. Bloom, S.: Deparation of Science (Wash. DC) 167: 1727-1729, 1970.

	43. BLOOM, S.: Phylogenetic differences in spontaneous contractility of isolated

	heart muscle cells. Comp. Biochem. Physiol. 37: 127-129, 1970.

	44. B
	- manumalian heart muscle cells. Exp. Cell. Res. 69: 17-24, 1971.

	45. BLUM, J. J., CREESE, R., JENDEN, D. J., AND SCHOLES, N. W.: The

	mechanism of action of ryanodine on akeletal muscle. J. Pharmacol. Exp.

	Ther. 121: 477-46. BOGDANOV, K. Y., ZAKHAROV, S. I., AND ROSENSHTRAUKH, L. V.: 1 origin of two components in contraction of guinea pig papillary muscle
the presence of noradrenaline. Can. J. Physiol. Pharmacol. 57: 866-8
47. BOGDANOV, K.
	-
	- origin of two components in contraction of guinea pig papillary muscle in
the presence of noradrenaline. Can. J. Physiol. Pharmacol. 57: 866-872,
1979.
47. BOGDANOV, K. Y., ZAKHAROV, S. I., AND ROSENSHTRAUKH, L. V.: Inhibi and from the mixed must be the mixed must be continued to the mixed must be continued to the continued with specific inhibitors of the voltage-
dependent Ca²⁺ channel. Eur. J. Biochem. 142: 449-455, 1984.
49. B0S8EN, E.
	-
	-
	- **of the mouse and finch left ventricle. Tissue & Cell 16:** 173-178, 1884.
 **48. BOSSEN, E. H., AND SOMMER, J. R.: Comparative stereology of the lizard and frog myocardium. Tissue & Cell 10: 773-784, 1978.

	49. BOSSEN, E.** and frog myocardium. Tissue & Cell 16: 173-178, 1984.

	49. BOSSEN, E. H., SOMMER, J. R., AND WAUGH, R. A.: Comparative stereology

	of the mouse and finch left ventricle. Tissue & Cell 10: 773-784, 1978.

	50. BOSSEN, E. H., 50. BOSSEN, E. H., SOMMER, J. R., AND WAUGH, R. A.: Comparative stereology
	- **49. BOSSEN, E. H., SOMMER, J. R., AND WAUGH, R. A.: Comparative stereology** of the mouse and finch left ventricle. Tissue & Cell 10: 773-784, 1978.

	50. BOSSEN, E. H., SOMMER, J. R., AND WAUGH, R. A.: Comparative stereolo

ARMACOLO

spet

CALCIUM MOBILIZATION AND CARDIAC INOTROPIC MECHANISMS ²¹¹

- 52. BRADY, **A. J.: Excitation** and **excitation-contraction coupling in cardiac**
-
- CALCIUM MOBILIZATION AND CA

52. BRADY, A. J.: Excitation and excitation-contraction coupling in cardiac

muscle. Annu. Rev. Physiol. 26: 341-356, 1964.

53. BRADY, A. J.: Active state in cardiac muscle. Physiol. Rev. 48:
-
-
- 55. BRAVENY, P., AND SUMBERA, J.; Eiectromechanical correlations in the mammalian heart muscle. Pflügers Arch. 319: 36-48, 1970.

56. BRAVEN', P., AND ŠUMBERA, J.; Biphasic activation of the myocardic contraction. Physiol. contraction. Physiol. Bohemoslov. 21: 73-74, 1972.

57. BRAVENÝ, P., ŠUMBERA, J., AND KEUTA, V.: After-contractions and restitution of contractility in the isolated guinea-pig auricles. Arch. Int. Physiol. Biochim. 74: 169 57. BRAVENÝ, P., ŠUMBERA, J., AND KRUTA, V.: After-contractions and restitions of contractility in the isolated guinea-pig auricles. Arch. Int. Physoner and memmalian ventricular muscle. Br. J. Pharmacol. 47: 1-11, 1973.
 EXAVENÝ, P., SUMBERA, J., AND KRUTA, V.: After-contractions and restitution of contractility in the isolated guinea-pig auricles. Arch. Int. Physiol. Biochim. 74: 169–178, 1966.
RIDGE, J. H. B.: Relationships between the s
-
- iol. Biochim. 74: 169-178, 1966.

58. BRIDGE, J. H. B.: Relationships between the sarcoplasmic reticulum and

sarcolemmal calcium transport revealed by rapidly cooling rabbit ventricular muscle. J. Gen. Physiol. 88: 437-47
- driven by an inward calcium gradient in heart muscle. Science (Wash.

DC) 219: 178-180, 1983.
 S9a. BRILL, D. M., AND WASSERSTROM, J. A.: Intracellular sodium and the

positive inotropic effect of veratridine and cardiac 59a. BRILL, D. M., AND WASSERSTROM, J. A.: Intracellular sodium and the
positive inotropic effect of veratridine and cardiac glycoside in sheep
Purkinje fibers. Circ. Res. 58: 109-119, 1986.
60. BROWN, A. M., KUNZE, D. L.,
-
- **cown, A. M., KUNZE, D. L., AND YATANI, A.: The agonistic lond.)**
dihydropyridines on Ca channels. Nature (Lond.) 311: 570-57
EVA, G., FITYS, R., PIZZARO, G., AND RIOS, E.: Voltage sensition for gelectal muscle membrane r
- dihydropyridines on Ca channels. Nature (Lond.) 311: 570-572, 1984.

61. BRUM, G., FITTS, R., PIZZARO, G., AND RIOS, E.: Voltage sensors of the

frog skeletal muscle membrane require calcium to function in excitation-

con frog skeletal muscle membrane require calcium to function in excitation-
contraction coupling. J. Physiol. (Lond.) 398: 475-505, 1988.
S2. BRUM, G., FLOCKERZI, V., HOFMANN, F., OSTERRIEDER, W., AND TRAU-
wexh, W.: Injectio
- 62. BRUM, G., FLOCKERZI, V., HOFMANN, F., USTERRIEDER, W., AND TRAUTHERLY SAME THE TROOM TO CALLY USE THE SAME COMPLETED FIGRES AT A 1983.

S. BRUM, G., RÍOS, E., AND STÉFANI, E.: Effects of extracellular calcium on calciu kinase into isolated cardiac myocytes. Pflügers Arch. 398: 147-154, 1983.
63. BRUM, G., Rios, E., AND STEFANI, E.: Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal
m
-
-
- **the absence of electrogenic sodium-calcium exchange in sheep cardiac** 66. CANNELL, M. B., AND LEDERER, W. J.: The arrhythmogenic current I_{TI} in
the absence of electrogenic sodium-calcium exchange in sheep cardiac
Purkinje fibres. J. Physiol. (Lond.) $374:201-219$, 1986.
67. CAPOROSSI, M.
-
- 68. CAPUTO, C.: The time course of potassium contractures of single muscle fibres. J. Physiol. (Lond.) 223: 483-505, 1972.
- Fibres. CAPOGROSSI, M. C., SUAREZ-ISLA, B. A., AND LAKATTA, E. G.: The inter-
action of electrically stimulated twitches and spontaneous contractile
waves in single cardiac myocytes. J. Gen. Physiol. 88: 615-633, 1986.
68.
- 88. CAPUTO, C.: The time course of potassium contractures of single muscle
fibres. J. Physiol. (Lond.) 223: 483-505, 1972.
GRAFOLI, E.: The transport of calcium across the inner membrane of
mitochondria. In Membrane Transp IO. CARMELIET, E., BUSSELEN, P., VERIDONCK, P., AND VEREECKE, J.: CARONI, P., CARONI, P., AND CARAFOLI, E.: An ATP-dependent Ca²⁺-pumping system in dog heart sarcolemma. Nature (Lond.) 283: 765-767, 1980.
72. CARONI, P.,
-
-
- In dog heart sarcolemma. Nature (Lond.) 283: 765-767, 1980.

22. CARONI, P., AND CARAFOLI, E.: The Ca^{x+}-pumping ATPase of heart sarco-

13. CARONI, P., REINLIB, L., AND CARAFOLI, E.: Charge movements during the

Na⁻-Ca
- 13. CARONI, P., REINLIB, L., AND CARAFOLI, E.: Charge movements during the

Na⁺-Ca²⁺ exchange in heart sarcolemmal vesicles. Proc. Natl. Acad. Sci.

USA 77: 6354-6358, 1980.

14. CARONI, P., ZURINI, M., CLARK, A., AND
- REONI, P., ZURINI, M., CLARK, A., AND CARAFOLI, E.: Further characterization and reconstitution of the purified Ca²⁺-pumping ATPase of heart
sarcolemma. J. Biol. Chem. 258: 7305-7310, 1983.
HAMBERLAIN, B. K., LEVITSKY, D Ca²⁺ transport properties. J. Biol. Chem. 258: 7305-7310, 1983.

75. CHAMBERLAIN, B. K., LEVITSKY, D. O., AND FLEISCHER, S.: Isolation and characterization of cannec crucisc asrcoplasmic reticulum with improved Ca²⁺ tr
- 76. CHAMBERLAIN, B. K., LEVITSKY, D. O., AND FLEISCHER, S.: Isolation and
characterization of canine cardiac sarcoplasmic reticulum with improved
Ca²⁺ transport properties. J. Biol. Chem. 258: 6602-6609, 1983.
76. CHAMBE
- vesicles. J. Biol. Chem. 259: 7547-7548, 1984. 78. CHANDERLAIN, B. K., VOLFR, P., AND FLEISCHER, S.: Inhibition of calcium-
induced calcium release from purified cardiac sarcoplasmic reticulum
induced calcium release from T. CHAMBERLAIN, B. K., VOLPE, P., AND FLEISCHER, S.: Inhibition of calcium-
induced calcium release from purified cardiac sarcoplasmic reticulum
vesicles. J. Biol. Chem. 259: 7547-7553, 1984.
78. CHANDLER, W. K., RAKOWSKI,
- **Biophys. Mol. Biol. 35: 1-52, 1979. 80. CHAPMAN, R. A., C0aAY, A., AND MCGUIGAN,** J. A. S.: Sodium/calcium
-
- skeletal muscle. J. Physiol. (Lond.) 254: 285-316, 1976.

79. CHAPMAN, R. A.: Excitation-contraction coupling in cardiac muscle. Prog.

Biophys. Mol. Biol. 35: 1-52, 1979.

80. CHAPMAN, R. A., CORAY, A., AND MCGUIGAN, J. A
- exchange in mammalian ventricular muscle: a study with sodium-sensitive
micro-electrodes. J. Physiol. (Lond.) 343: 253-276, 1983.
81. CHAPMAN, R. A., AND L&OTY, C.: The time-dependent and dose-dependent
effects of caffeine
-

ship of frog atrial trabeculae as determined by potassium contractures. J. Physiol. (Lond.) 310: 97-115, 1981.

- 83. CHIESI, M., Ho, M. M., INESI, G., SOMLYO, A. V., AND SOMLYO, A. P.:
Primary role of sarcoplasmic reticulum in phasic contractile activation of
cartiac myocytes with shunted myolemma. J. Cell Biol. 91: 728-742,
1981. 83. CHIESI, M., Ho, M. M., INESI, G., SOMLYO, A. V., AND SOMLYO, A. I Primary role of sarcoplasmic reticulum in phasic contractile activation cardiac myocytes with shunted myolemma. J. Cell Biol. 91: 728-74
1981.
84. CHU dependent changes in myocardial contractile sctivation of cardiac myocytes with shunted myolemma. J. Cell Biol. 91: 728-742, 1981.
 47: CALOCK, L. H. S., AND PARMLEY, W. W.: Caffeine reversal of length-

dependent change
- 1968. Primary role of sarcoplasmic reticulum in phasic contractile activation of

1968. BRAVENÝ, P., AND ŠUMBERA, J.: Relation of contraction and repolarization

1968. 8RAVENÝ, P., AND ŠUMBERA, J.: Electromechanical correl 34. CHUCK, L. H. S., AND PARMLEY, W. W.: Catterne reversal of length-
dependent changes in myocardial contractile state in the cat. Circ. Res.
47: 592-598, 1980.
85. CIOFALO, F. R.: Relationship between ³H-ryanodine upta
	-
	-
	-
	- contractivity. Am. J. Physiol. 225: 324-327, 1973.

	86. CLARK, A., AND OLSON, C. B.: Effects of cafferine and isoprenaline on

	mammalian ventricular muscle. Br. J. Pharmacol. 47: 1-11, 1973.

	87. CORABOEUP, E.: Membrane el mammalian ventricular muscle. Br. J. Pharmacol. 47: 1-11, 1973.
DRABOEUF, E.: Membrane electrical activity and double component con-
traction in cardiac tissue. J. Mol. Cell. Cardiol. 6: 215-225, 1974.
RANETIELD, P. F., AN FIBER EXPORABOEUP, E.: Membrane electrical activity and double component contraction in cardiac tissue. J. Mol. Cell. Cardiol. 6: 215–225, 1974.

	RARETELD, P. F., AND ARONSON, R. S.: Initiation of sustained rhythmic

	activ 88. CRANEFIELD, P. F., AND ARONSON, R. S.: Initiation of sustained rhythmic activity by single propagated action potentials in canine cardiac Purkinje fibers exposed to sodium-free solution or to ouabain. Circ. Res. 34: 47
- driven by an inward calcium gradient in heart muscle. Science (Wash. 1974.

DC) 219: 178-180, 1983.

89. DEGUBARETT, T., AND SLEATOR, W., JR.: Effects of caffeine on mammalian

59a. BRLLL, D. M., AND SLEATOR, W., JR.: Effe activity by single propagated action potentials in canine cardiac Furking
fibers exposed to sodium-free solution or to ouabain. Circ. Res. 34: 477-
481, 1974.
89. DEGUBAREFF, T., AND SLEATOR, W., JR.: Effects of caffeine o
	- atrial muscle, and its interaction with adenosine and calcium. J. Pharmacol. Exp. Ther. 148: 202-214, 1965.
90. DETTMER, J. W., AND ELLIS, D.: Interactions between the regulation of the intracellular pH and sodium activity
	- ETTMER, J. W., AND ELLIS, D.: Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibres. J. Physiol. (Lond.) 304: 471-488, 1980.
RMEIS, L., AND INESI, G.: The transpor 91. DEMEIS, L., AND INESI, G.: The transport of calcium by sarcoplasmic reticulum and various microsomal preparations. *In* Membrane Transport of Calcium, ed. by E. Carafoli, pp. 141-186, Academic Press, London, 1982.
92.
	- of Calcium, ed. by E. Caratoli, pp. 141-186, Academic Press, London,
1982. Dosson, J. G., JR., Ross, J., JR., AND MAYER, S. E.: The role of cyclic
adenosine 3',5'-monophosphate and calcium in the regulation of contrac-
til
	- Circ. Res. 39: 388-395, 1976.

	93. DUBELL, W. H., AND HOUSER, S. R.: A comparison of cytosolic free Ca²⁺

	in resting feline and rat ventricular myocytes. Cell Calcium 8: 259-268,

	1987.
 EBASHI, S., ENDO, M., AND OHTSUK UBELL, W. H., AND HOUSER, S. F.
in resting feline and rat ventricul.
1987.
ASRI, S., ENDO, M., AND OHTSUN
Rev. Biophys. 2: 351–384, 1969.
3ASHI, S., AND LIPMANN, F.: Adeno.
	-
- FREAKING THE WALKER CALLEWARK CONTROLL CON 1987.

1987.

1987. ENDO, M., AND OHTSUKI, I.: Control of muscle contraction. Q.

Rew. Biophys. 2: 351-384, 1969.

95. EBASHI, S., AND LIPMANN, F.: Adenosine triphosphate-linked concentration

of calcium ions in a particul of calcium ions in a particulate fraction of rabbit muscle contraction. Q.

Rev. Biophys. 2: 351-384, 1969.

95. EBASHI, S., AND LIPMANN, F.: Adenosine triphosphate-linked concentration

of calcium ions in a particulate fr
	- **the solution is a particulate fraction of rabbit muscle. J. Cell. Biol.**
14: 389–400, 1962.
1988–400, 1962.
1988–800, 1962.
1988–800, 1962.
1988–800 in R. A. AND KÜHLKAMP, V.: The reaction of ouabain with
the sodium pump
	- 14: 389–400, 1962.

	96. EBNER, F., KORTH, M., AND KÜHLKAMP, V.: The reaction of ouabain with

	the sodium pump of guinea-pig myocardium in relation to its inotropic

	effect. J. Physiol. (Lond.) 379: 187–203, 1986.

	97. EDMA
	- 99. EDMAN, K. A. P., AND JOHANNSSON, M.: The contractile state of rabbit papillary muscle in relation to stimulation frequency. J. Physiol. (Lond.) 254: 565-581, 1976.
98. EGAN, T., NOBLE, S. J., POWELL, T., AND TWIST, V. rabbit ventricular cells. J. Physiol. (Lond.)

	284: 565-581, 1976.

	98. EGAN, T., NOBLE, D., NOBLE, S. J., POWELL, T., AND TWIST, V. W.:

	99. EINWACHTER, H. M., HAAS, H. G., AND KERN, R.: Membrane current and

	99. EINWACHT **contraction in frog atrial fibres. J. Powell, T., AND TWIST, V. W.:**
Separation of calcium and [Ca²⁺]₁-activated current in guinea-pig and
**29. EINWACHTER, H. M., HAAS, H. G., AND KERN, R.: Membrane current and
contra**
	-
	- 100. EISENBERG, B. R., AND EISENBERG, R. S.: The T-SR junction in contracting
- in dog heart sarcolemma. Nature (Lond.) 283: 765-767, 1980.

72. CARONI, P., AND CARAFOLI, E.: The Ca²⁺-pumping ATPase of heart sarco-

101. EISNER, D. A., AND LEDERER, W. J.: Inotropic and arrhythmogenic effects

12. CA rabbit ventricular cells. J. Physiol. (Lond.) 381: 94P, 1986.

99. EINWACHTER, H. M., HAAS, H. G., AND KERN, R.: Membrane current and

contraction in frog atrial fibres. J. Physiol. (Lond.) 227: 141-171, 1972.

00. EISENBE (Lond.) **294: 255-277, 1979.**

2000. EISENBERG, B. R., AND EISENBERG, R. S.: The T-SR junction in contracting

2010. EISNER, D. A., AND LEDERER, W. J.: Inotropic and arrhythmogenic effects

2010. EISNER, D. A., AND LEDERER
	-
	- 101. EISNER, D. A., AND LEDERER, W. J.: Inotropic and arrhythmogenic effects of potassium depleted solutions on mammalian cardiac muscle. J. Physiol. (Lond.) 294: 255-277, 1979.
102. EISNER, D. A., AND LEDERER, W. J.: Na-C ISBER, D. A., AND LEDERER, W. J.: Na-Ca exchange: stoichiometry and electrogenicity. Am. J. Physiol. 17: C189-C202, 1985.
SNER, D. A., LEDERER, W. J., AND VAUGHAN-JONES, R. D.: The control
SNER, D. A., LEDERER, W. J., AND electrogenicity. Am. J. Physiol. 17: C189-C202, 1985.

	103. EISNER, D. A., LEDERER, W. J., AND VAUGHAN-JONES, R. D.: The control

	of tonic tension by membrane potential and intracellular sodium activity

	in the sheep cardi in the sheep cardiac Purkinje fibre. J. Physiol. (Lond.) 335: 723-743,
	- In the sheep cardiac Purkinje fibre. J. Physiol. (Lond.) 335: 723-743,

	1983.

	104. EISNER, D. A., AND VALDEOLMILLOS, M.: The mechanism of the increase

	of tonic tension produced by caffeine in sheep cardiac Purkinje fibre
	- oscillations in sheep cardiac Purkinje fibres. J.

	of tonic tension produced by caffeine in sheep cardiac Purkinje fibres. J.

	105. EISNER, D. A., AND VALDEOLMILLOS, M.: A study of intracellular calcium

	oscillations in sh level. J. Physiol. (Lond.) 372: 539-556, 1986.
	- oscillations in sheep cardiac Purkinje fibres measured at the single cell
level. J. Physiol. (Lond.) 372: 539-556, 1986.
106. ELLIS. D.: The effects of external cations and ouabain on the intracellular
sodium activity of s
	-
	- level. J. Physiol. (Lond.) 372: 539-556, 1986.

	106. ELLIS, D.: The effects of external cations and ouabain on the intracellular

	sodium activity of sheep heart Purkinje fibres. J. Physiol. (Lond.) 273:

	211-240, 1977.

	10 107. ENDO, M.: Calcium release from the sarcoplasmic reticulum. Physiol. Kev.
57: 71-108, 1977.
ENDO, M.: AND KTAZAWA, T.: E-C coupling studies on skinned cardiac
fibers. In Biophysical Aspects of Cardiac Muscle, ed. by M.
	-
	- from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature (Lond.) **228:** 34-36, 1970.
110. ENDOH, M., AND ILHMA, T.: Twitch potentiation by rest in canine ventricular muscle: effects of theophylline. Am. J. 111. Endote: effects of theophylline. Am. J. Physiol. **241:** H583-H590, 1981.

	111. ENDOH, M., IJJIMA, T., AND MOTOMURA, S.: Inhibition by theophylline of
	-

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

2012

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8,

-
- **212**
 EREITER

the early component of canine ventricular contraction. Am. J. Physiol.

11: H349–H358, 1982.

112. ENDH, M., AND NAXAMURA, M.: Effects of 8-S-benryl cyclic AMP on 14:

mechanical characteristics and cycl
-
- sients in canine ventricular muscle. Circ. Suppl. 73: 111 117-111 133, 1986.
BHATO, A.: Calcium-induced release of calcium from the cardiac sarco-
plasmic reticulum. Am. J. Physiol. 245 (Cell Physiol. 14): C1-C14, 1983.
BB aients in canine ventricular muscle. Circ. Suppl. 73: III 117-III 133, 1986.

14. GOLDSTEIN, A.: Otto Krayer 1899-1982. In N. A. S. Biographical Memoirs,

14. FABIATO, A.: Calcium-induced release of calcium from the cardia
- of calcium-induced release of calcium from the sarcoplasmic reticulum of
a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85: 247-289,
1986.
1986.
1986. and trigger calcium release from the sarcoplasmic reticulum a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85: 247-289, 1985.

116. FABIATO, A.: Simulated calcium current can both cause calcium loading in

and trigger calcium release from the sarcoplasmic reticulum of a s 2970-2976, 1985. 1985. 1985. 1985. 1985. 1985. 1985. 1987. 1988. 1987. 1987. 1987. 1987. 1
-
- **cardiac fibers with disrupted in skinned cardiac cells. Fed. Proc. 44:**
 cardiac fibers with disrupted or closed sarcolemmas. Circ. Res. 31: 293-
 and TABIATO, A., AND FABIATO, F.: Contractions induced by a calcium-tr
- cardiac fibers with disrupted or closed sarcolemmas. Circ. Res. 31: 293-
307, 1972.
ABIATO, A., AND FABIATO, F.: Contractions induced by a calcium-triggered
and skeletal muscle. Am. J. Physiol. 216: 206-214, 1969.
release cardiac ches with disrupted or closed sarcolemmas. Circ. Res. 31: 293-307, 1972.

119. FABIATO, A., AND FABIATO, F.: Contractions induced by a calcium-triggered

release of calcium from the sarcoplasmic reticulum of single
- release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol. (Lond.) 249: 469-495, 1975.
RBIATO, A., AND FABIATO, F.: Calcium-induced release of calcium from the sarcoplasmic reticulum of release of calcium from the sarcoplasmic reticulum of single skinned
cardiac cells. J. Physiol. (Lond.) 249: 469–495, 1975.
BaATO, A., AND FABIATO, F.: Calcium-induced release of calcium from the
sarcoplasmic reticulum of cardiac cells. J. Physiol. (Lond.) 249: 469-495, 1975.

120. FABIATO, A., AND FABIATO, F.: Calcium-induced release of calcium from the

sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit,

rat, and sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and new-born rat ventricles. Ann. NY Acad. Sci. 307: 491-522, 1978.
121. FAIRHURST, A. S., AND HASSELBACH, W.:
-
- 122. FARAH, A. E., **ALOUSI, A. A., AND SCHWARZ,** R. P., JR.: Positive inotropic Acad. Sci. 307: 491-522, 1978.

MRHURST, A. S., AND HASSELBACH, W.: Calcium efflux first sarcotubular fraction. Eur. J. Biochem. 13: 504-509, 1970.

RRAH, A. E., ALOUSI, A. A., AND SCHWARZ, R. P., JR.: Posit

agents. Ann. 121. FAIRHURST, A. S., AND HASSELBACH, W.: Calcium efflux from a heavy
sarcotubular fraction. Eur. J. Biochem. 13: 504–509, 1970.
122. FARAH, A. E., ALOUSI, A. A., AND SCHWARZ, R. P., JR.: Positive inotropic
negenta. Ann.
-
- sarcotubular fraction. Eur. J. Biochem. 13: 504-509, 1970.

122. FARAH, A. E., ALOUSI, A. A., AND SCHWARZ, R. P., JR.: Positive inotropic

agents. Ann. Rev. Pharmacol. Toxicol. 24: 275-328, 1984.

123. FAWCETT, C. W., AND 123. FAWCETT, C. W., AND MCNUTT, N. S.: The ultrastructure of the cat
myocardium. I. Ventricular papillary muscle. J. Cell. Biol. 42: 1-45, 1969.
124. FEDIDA, D., NOBLE, D., RANKIN, A. C., AND SPINDLER, A. J.: The arrhyth 124. FEDIDA, D., NOBLE, D., RANKIN, A. C., AND SPINDLER, A. J.: The arrhythmogenic transient inward current i₁₁ and related contraction in isolated contraction in your temporation in sponsition in the spinne. D., NoBLE,
- related to contraction in guinea-pig ventricular myocytes. J. Physiol.
- **126. FEDIDA, D., NOBLE, D., SHIMONI, Y., AND SPINDLER, A. J.: Inward current**
related to contraction in guinea-pig ventricular myocytes. J. Physiol.
(Lond.) **385:** 565-589, 1987.
126. FEIGL, E. O.: Effects of paired stim 128. FEIGL, E. O.: Effects of paired stimulation on cardiac muscle during diastole.
 In Paired Pulse Stimulation of the Heart, ed. by P. F. Cranefield and B.

F. Hoffman, pp. 155-163, The Rockefeller University Press, Ne
- In Paired Pulse Stimulation of the Heart, ed. by P. F. Cranefield and B.
F. Hoffman, pp. 155-163, The Rockefeller University Press, New York,
1968.
FERRIER, G. R.: The effects of tension on acetylstophanthidin-induced
tran
- transient depolarizations and aftercontractions in canine myocardial and

Purkinje tissues. Circ. Res. 38: 156-162, 1976.

128. FERRIER, G. R., SAUNDERS, J. H., AND MENDEZ, C.: A cellular mechanism

for the generation of v
- York, 1983.
- Localization of Ca²⁺ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc. Natl. Acad. Sci. USA 82: 7256-7259, 1985. Experimental Facts and Therapettic Prospects. John Wiley & Sons, New

York, 1983.

130. FLEISCHER, S., OGUNBUNMI, E. M., DIXON, M. C., AND FLEER, E. A. M.:

Localization of Ca^{x+} release channels with ryanodine in junctio Localization of Ca^{x+} release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. Proc.
Natl. Acad. Sci. USA 82: 7256-7259, 1985.
NRES, M. S., AND SPERELAKIS, N.: Br
- 674-681, 1982. Natl. Acad. Sci. USA 82: 7256-7259, 1985.

131. FORBES, M. S., AND SPERELAKIS, N.: Bridging junctional processes in

couplings of skeletal, cardiac, and smooth muscle. Muscle & Nerve 5:

674-681, 1982.

PODOLSKY, R. J.: Re
-
- voltage Tension is a N. AND MAINWOOD, G. W.: Interval dependent inotropic effects in the rat myocardium and the effect of calcium. Pflügers Arch.
 352: 189-196, 1974.

134. FOZZARD, H. A., AND HELLAM, D. C.: Relationship
- (Lond.) 218: 588-589, 1968. ISO. C.: Relationship between membrane voltage and tension in voltage-clamped cardiac Purkinje fibres. Nature (Lond.) 218: 588-589, 1968.

135. FRANK, G. B.: The current view of the source of tr
- contraction coupling in vertebrate skeletal muscle. Biochem. Pharmacol. voltage and tension in voltage-clamped cardiac Purkinje fibres. Nature (Lond.) 218: 588-589, 1968.

135. FRANK, G. B.: The current view of the source of trigger calcium in excitation-

contraction coupling in vertebrate sk **calcium. Naunyn-Schmiedeberg's Arch. Pharmacol.**
 calcium. Pharmacol.
 calcium. Naunyn-Schmiedeberg's Arch. Pharmacol. 290: 35-47, 1975.
 RANXINI-ARMSTRONG, C.: Studies of the triad I. Structure of the junction

in
- **29:** 2399-2406, 1980.
 29: 2399-2406, 1980.
 29: 2399-2406, 1980.
 EXELATOR, W. W.: Effect of ryanodine on myocardial

calcium. Naunyn-Schmiedeberg's Arch. Pharmacol. **290:** 35-47, 1975.
 EXELATOR TO THE TORE OF AL
-
-
- 139. FURCHGOTRGOTRIEGON. FURCHGOTRIEGON. FURCHGOTRIEGON. *IPD. J.* Physical. 25: 467-479: 75.

139. FURCHOTRIEGON: 25: 467-479: 75.

139. FURCHOTRIEGONTRIEGON. PR. F.: Some comments on the nature of the restitution proce JKUDA, Y.: Difference in calcium content of atrial and ventricular musc.
Jpn. J. Physiol. 25: 467–479: 75.
DRCHOOTT, R. F.: Some comments on the nature of the restitution proce
occurring between beats in cardiac muscle. In 139. FURCHGOTT, R. F.: Some comments on the nature of the restitution process
cocurring between beats in cardiac muscle. *In* Pharmacology of Cardiac
forming between beats in cardioc contraction. *In* The Heart and
Cardiov
-
-

- dependence of contraction in sheep cardiac Purkinje fibers. Circ. Res. 28:
446–460, 1971.
142. GLITSCH, H. G., AND POTT, L.: Spontaneous tension oscillations in guinea-
pig atrial trabeculae. Pflügers Arch. 358: 11–25, 197
- dependence of contraction in sheep cardiac Purkinje fibers. Circ. Res. 28:

446–460, 1971.

142. GLITSCH, H. G., AND POTT, L.: Spontaneous tension oscillations in guinea-

pig atrial trabeculae. Pflügers Arch. 358: 11–25, LTBCH, H. G., AND POTT, L.: Sponta
pig atrial trabeculae. Pflügers Arch.
LTBCH, H. G., REUTER, H., AND SC
sodium concentration on calcium flu
Physiol. (Lond.) 209: 25–43, 1970.
OLDSTEIN, A.: Otto Krayer 1899–198 pig atrial trabeculae. Pflugers Arch. 358: 11-25, 1975.

143. GLITSCH, H. G., REUTER, H., AND SCHOLZ, H.: The effect of the interna

sodium concentration on calcium fluxes in isolated guinea-pig auricles. J

Physiol. (Lond
-
- 143. GLITSCH, H. G., REUTER, H., AND SCHOLZ, H.: The effect of the internal
sodium concentration on calcium fluxes in isolated guinea-pig auricles. J.
Physiol. (Lond.) 2009: 25-43, 1970.
144. GOLDSTEIN, A.: Otto Krayer 189
- alterations in electrical and mechanical parameters of frog skeletal muscle
fibres. J. Physiol. (Lond.) 343: 197-214, 1983.
146. Govo, M., KIMOVO, Y., AND KATO, Y.: A study on the excitation-contraction.
tion coupling of t fibres. J. Physiol. (Lond.) 343: 197-214, 1983.
 OTO, M., KIMOTO, Y., AND KATO, Y.: A study on the excitation-con

tion coupling of the bullfrog ventricle with voltage clamp technique.

J. Physiol. 21: 159-173, 1971.

RA
-
- 148. GREGER, R.: Funktion and Ultrastruktur des Meerschweinchen-Papillar-
muskels unter Einwirkung von Ryanodine. Inaugural Dissertation, 100
pp., Technische Universität München, Fakultät für Medizin, 1980. muskels unter Einwirkung von Ryanodine. Inaugural Dissertation, 100 pp., Technische Universität München, Fakultät für Medizin, 1980.
AJDU, S.: Mechanism of the Woodworth staircase phenomenon in heart and skeletal muscle. A calcium on pig striated muscle. J. Physiol. (Lond.) 349: 1-13, 1984.

148. GRGRR, R.: Funktion and Ultrastruktur des Meerschweinchen-Papillar-

muskels unter Einwirkung von Ryanodine. Inaugural Dissertation, 100

pp., Tech
-
-
- Identification and partial purification and partial purification of the cardiac sodium-calcium ex-
151. HALE, C. C., SLAUGHTER, R. S., AHRENS, D. C., AND REVES, J. P.:
161. HALE, C. C., SLAUGHTER, R. S., AHRENS, D. C., AND
- system of skeletal muscle. Am. J. Physiol. 218: 966-972, 1970.
ALE, C. C., SLAUGHTER, R. S., AHRENS, D. C., AND REVES, J. P.:
Identification and partial purification of the cardiac sodium-calcium ex-
change protein. Proc. 149. Homal articles of chemical states. Amplies from depolarion of chemical states. D. C., and probably results for depolarion of the cell disruption, and probably results from depolarion of the cell disruption, and probab
- sarcoplasmic reticulum in calcium-tolerant rat cardiac myocytes. J. Phys-
iol. (Lond.) 390: 453-467, 1987. artifact of cell disruption, and probably results from depolarization
sealed-off T-tubules. Biophys. J. 53: 607a, 1988.
153. HANSFORD, R. G., AND LAKATTA, E. G.: Ryanodine releases calcium f
sarcoplasmic reticulum in calci
- 103. HANSFORD, K. G., AND LAKATTA, E. G.: Kyanodine releases calcium from
sarcoplasmic reticulum in calcium-tolerant rat cardiac myocytes. J. Phys-
iol. (Lond.) 390: 453-467, 1987.
154. HASSELBACH, W., AND MAKINOSE, M.: Di
- Biochem. Z. 333: 518-528, 1961.

155. **HEGNAUER, A. H., FENN, W. O., AND COBB, D. M.: The cause of the rise

in oxygen consumption in frog muscles in excess of potassium. J. Cell.

156. HEILBRUNN, L. V., AND WIERCINSKI, F**
-
- 167. HERENSON, A. H., Influence of consumption in frog muscles in excess of potassium. J. Cell.

Comp. Physiol. 4: 505-526, 1934.

156. HEILBRUNN, L. V., AND WIERCINSKI, F. J.: The action of various cations

on muscle prot 166. HEILBRUNN, L. V., AND WIERCINSKI, F. J.: The action of various cations
on muscle protoplasm. J. Cell. Comp. Physiol. 29: 15-32, 1947.
157. HENDERSON, A. H., BRUTSAERT, D. L., FORMAN, R., AND SONNENBLICK,
E. H.: Influe Purking fibers. J. Gen. Physiol. 83: 417-433, 1984. 159. Hushaven Physiol. B. H.: Influence of caffeine on force development and force-frequency relations in cat and rat heart muscle. Cardiovasc. Res. 8: 162-172, 1974. 158
-
- relations in cat and rat heart muscle. Cardiovasc. Res. 8: 162-172, 1974.
158. HESS, P., AND WIER, W. G.: Excitation-contraction coupling in cardiac
Purkinje fibers. J. Gen. Physiol. 83: 417-433, 1984.
159. HIBBERD, M. G., Purkinje fibers. J. Gen. Physiol. 83: 417-433, 1984.
169. HIBBERD, M. G., AND JEWELL, B. R.: Calcium- and length-dependent force
1962.
160. HILGEMANN, D. W.: Extracellular calcium transients and action potential
configurat **EBERD, M. G., AND JEWELL, B. R.: Calcium- and length-dependent force** production in rat ventricular muscle. J. Physiol. (Lond.) 329: 527-540, 1982.
ILGEMANN, D. W.: Extracellular calcium transients and action potential LG
- Circ. Res. 32: 600-609, 1973.

TRESERIEN, A.: Calcium antagonism in heart and smooth muscle. *In* 169. HIBBERD, M. G., AND JEWELL, B. R.: Calcium and length-dependent force

for the generation of ventricular arrhythmiss by atrium. J. Gen. Physiol. (J. Gen. Physiol. (Lond.) 329: 527-540,
1982.
160. HILGEMANN, D. W.: Extracellular calcium transients and action potential
configuration changes related to post-stimulatory potentation in rabbit
at
	- ILGEMANN, D. W.: Extracellular calcium transients and action potential
configuration changes related to post-stimulatory potentation in rabbit
atrium. J. Gen. Physiol. 87: 675-706, 1986.
ILGEMANN, D. W.: Extracellular calc configuration changes related to post-stimulatory potentation in
atrium. J. Gen. Physiol. 87: 675-706, 1986.
161. HILGEMANN, D. W.: Extracellular calcium transients at single exci-
in rabbit atrium measured with tetramethy
	- in rabbit atrium measured with tetramethylmurexide. J. Gen. Physiol.

	87: 707-735, 1986.

	162. HILGEMANN, D. W., DELAY, M. J., AND LANGER, G. A.: Activation-dependent

	ent cumulative depletions of extracellular free calciu in rabbit atrium measured with tetramethylmurexide. J. Gen. Physiol.

	87: 707-735, 1986.

	HILGEMANN, D. W., DELAY, M. J., AND LANGER, G. A.: Activation-depend-

	ent cumulative depletions of extracellular free calcium in gu
	-
	- **poster of contraction of contraction in cardiac muscle. Am. J. Physiol. 35:** 95- 104. Horrachion of contraction in cardiac muscle. Am. J. Physiol. 185: 95-
195. **HOFFMAN,** B. F., BINDLER, E., AND SUCKLING, E. E.: Postertr
	- transmembrane potentials of cardiac muscle. Am. J. Physiol. 186: 35-
102, 1956.
165. HOPTMAN, B. F., AND SUCKLING, E. E.: Effect of several cations on
transmembrane potentials of cardiac muscle. Am. J. Physiol. 186: 317-
3
	- 165. HOFFMAN, B. F., AND SUCKLING, E. E.: Effect of several cations on
transmembrane potentials of cardiac muscle. Am. J. Physiol. 186: 317-
324, 1956.
HOLCK, M., THORENS, S., AND HAEUSLER, G.: Characterization of [²H]
n
	-
	- nifedipine binding sites in rabbit myocardium. Eur. J. Pharmacol. 85:

	166. HoNERJAGER, P.: Cardioactive substances that prolong the open state of

	sodium channels. Rev. Physiol. Biochem. Pharmacol. 92: 1–74, 1982.

	167. H
- A. M. Katz and H. E. Morgan, pp. 747-778, Raven Press, New York, 1986. HONERJÄGER, P., HEISS, A., SCHÄFER-KORTING, M., SCHÖNSTEINER, G., occurring between beats in cardiac muscle. In Pharmacology of Cardiac and RETTER, M.: Naunyn-Schmiedeberg's Arch. Pharmacol. 308: R36, 1979.

167. HowekiJoken, Pharmacol. 302: 1-74, 1982.

167. HowekiJoken, P., GREGER, R., AND HAMMERSRN, F.; Ryanodine alters

cardiac contraction without detaching the serole cardiac contraction without detaching the sarcolemma from couplings.
Naunyn-Schmiedeberg's Arch. Pharmacol. 308: R36, 1979.
ONERIAGER, P., HEISS, A., SCHAFER-KORTING, M., SCHONSTEINER, G.,
AND REITER, M.: UD-CG 115—a cardi **muscle. Homeonomy Schmiedeberg's** Arch. Pharmacol. 308: R36, 1979.

AND RETTER, M.: UD-CG 115—a cardiotonic pyridezinone which elevates

cyclic AMP and prolongs the action potential in guinea-pig papillary

muscle. Naunyn 170. HONERJAGER, P., AND MEISSNER, A.: The positive inctropic effect of HONERJAGER, P., AND MEISSNER, A.: The positive inctropic effect of acontitine. Naunyn-Schmiedeberg's Arch. Pharmacol. 325: 259-269, 1984.
169. HONERJA
	- **aconitine. Naunyn-Schmiedeberg's Arch. Pharmacol. 322:** 49-58, 1983.
	-

ARMACOLO

CALCIUM MOBILIZATION AND C.
veratridine on action potential and contraction in mammalian ventricular
myocardium. Naunyn-Schmiedeberg's Arch. Pharmacol. 289: 1–28, 1975. CALCIUM MOBILIZATION AND CA
weratridine on action potential and contraction in mammalian ventricular
myocardium. Naunyn-Schmiedeberg's Arch. Pharmacol. 289: 1-28, 1975.
ONERJÄGER, P., AND RETTER, M.: Sarcolemmal sodium per

- veratridine on action potential and contraction in mammalian ventricula
myocardium. Naunyn-Schmiedeberg's Arch. Pharmacol. 289: 1–28, 1975
ONERJÄGER, P., AND REFTER, M.: Sarcolemmal sodium permeability an
contractile force veratridine on action potential and contraction in mammalian ventricula
myocardium. Naunyn-Schmiedeberg's Arch. Pharmacol. 289: 1-28, 197.
717. HONERJÄGER, P., AND REITER, M.: Sarcolemmal sodium permeability an
contractile
-
- contractile force of guinea pig papillary muscle. Effects of germitrine.
Circ. Res. 40: 90-98, 1977.
172. HONERJÄGER, P., AND REITER, M.: The cardiotoxic effect of battachotoxin.
Naunyn-Schmiedeberg's Arch. Pharmacol. **299** ONERJÄGER, P., AND REITER, M.: The cardiotoxic effect of batrachotoxin.
Naunyn-Schmiedeberg's Arch. Pharmacol. 299: 239–252, 1977.
ONERJÄGER, P., SCHÄFER-KORTING, M., AND REITER, M.: Involvement
of cyclic AMP in the direct 173. HONERJÄGER, P., SCHÄFER-KORTING, M., AND REITER, M.: Involvement
of cyclic AMP in the direct inotropic action of amrinone. Biochemical
and functional evidence. Naunyn-Schmiedeberg's Arch. Pharmacol. 318:
112-120, 1981 of cyclic AMP in the direct inotropic action of amrinone. Biochemical
and functional evidence. Naunyn-Schmiedeberg's Arch. Pharmacol. 318:
112-120, 1981.
174. Horackova, M., AND VASSORT, G.: Ionic mechanism of inotropic and functional evidence. Naunyn-Schmiedeberg's Arch. Pharmacol. 318:

112–120, 1981.

174. HORACKOVA, M., AND VASSORT, G.: Ionic mechanism of inotropic effect of

veratrine on frog heart. Pflügers Arch. 341: 281–284, 1973.
-
-
- 112–120, 1981.
 contribution in frog meant. Pflügers Arch. 341: 281–284, 1973.
 contractility in frog myocardium. J. Physiol. (Lond.) 259: 597–616, 1976.
 Example 20. AND VASSORT, G.: Calcium conductance in relation t veratrine on frog heart. Pflügers Arch. 341: 281–284, 1973.

175. HORACKOVA, M., AND VASSORT, G.: Calcium conductance in relation to

contractility in frog myocardium. J. Physiol. (Lond.) **259**: 597–616, 1976.

176. HORACK
- 176. HORACKOVA, M., AND VASSORT, G.: Sodium-calcium exchange in regulation of cardiac contractility. J. Gen. Physiol. 73: 403-424, 1979.
177. HOTA, Y., TAKEYA, K., KOBAYASHI, S., HARADA, N., SAKAKIBARA, J., AND SHIRAI, N.: 176. HORACKOVA, M., AND VASSORT, G.: Sodium-calcium exchange in regulation
of cardiac contractility. J. Gen. Physiol. 73: 403-424, 1979.
177. HOTTA, Y., TAKEYA, K., KOBAYASHI, S., HARADA, N., SAKAKIBARA, J., AND
SHIRAI, N.
-
- and lethal does of grayanotoxins in guinea pig. Arch. Toxicol. 44: 259-
267, 1980.
267, 1980.
178. HUNTER, D. R., HAWORTH, R. A., AND BERKOFF, H. A.: Modulation of
cellular calcium stores in the perfused rat heart by isopr ryanodine. Circ. Res. 53: 703-712, 1983.

179. HWANG, K. S., AND VANBREEMEN, C.: Ryanodine modulation of "Ca efflux"

180. IKWANG, K. S., AND VANBREEMEN, C.: Ryanodine modulation of "Ca efflux"

180. IKM.O. N., ANTONIU, B.
- **the isolated sarcoplasmic reticulum is triggered via the attached transverse tubular system. J. Biol. Chem. 259: 13151-13158, 1984.**
181. LLDEFONSE, M., JACQUEMOND, V., ROUGIER, O., RENAUD, J. F., FOSSET,
- **M., AND LAZDUNSKI, M.: Excitation contraction coupling in skeletal EMOTO, N., ANTONIU, B., AND KIM. D. H.: Rapid calcium release from** the isolated sarcoplasmic reticulum is triggered via the attached transverse tubular system. J. Biol. Chem. **259:** 13151-13158, 1984.
DEFONSE, M., JACQUE tubular system. J. Biol. Chem. 209: 131b1-131b8, 1984.

181. ILDEFONSE, M., JACQUEMOND, V., ROUGIER, O., RENAUD, J. F., FOSSET,

M., AND LAZDUNSKI, M.: Excitation contraction coupling in skeletal

muscle: evidence for a ro
- sarcoplasmic retires and inhibitors in the dihydropyridine series. Biochem. Biophys.
Res. Commun. 129: 904-909, 1985.
182. INUI, M., CHAMBERLAIN, B. K., SARTO, A., AND FLEISCHER, S.: The nature
of the modulation of Ca²⁺
- UI, M., CHAMBERLAIN, B. K., SATTO, A., AND FLEISCHER, S.: The nature
of the modulation of Ca²⁺ transport as studied by reconstitution of cardiac
uI, M., SATTO, A., AND FLEISCHER, S.: Purification of the ryanodine
uU, M., of the modulation of Ca^{2+} transport as studied by reconstitution of cardiac
sarcoplasmic reticulum. J. Biol. Chem. 261: 1794-1800, 1986.
183. INU, M., SAITO, A., AND FLEISCHER, S.: Purification of the ryanodine
recepto
- from cardiac sarcoplasmic reticulum and identity with the feet structures.

J. Biol. Chem. 262: 15637-15642, 1987.

184. IsENBERG, G.: La potassium conductance of cardiac Purkinje fibres controls steady state potas-

185.
-
-
- J. Biol. Chem. 262: 15637-15642, 1987.

184. Isawasac, G.: Isa potassium conductance of cardiac Purkinje fibres controlled by $[Ca^{2+}]$? Nature (Lond.) 263: 273-274, 1975.

185. ISBNBERG, G.: Cardiac Purkinje fibres: $[Ca^{2$
-
- **Pharmacol. Rev. 21: 1-25, 1969.**
 Pharmacol. 80 (suppl. 1): 117-122, 1985.
 Pharmacol. Rev. 21: 1-25, 1969.
 Ph voltage dependence. Basic Res. Cardiol. 80 (suppl. 1): 11⁷–122, 1985.
Pharmacol. Rev. 21: 1-25, 1969.
Tharmacology of ryanodine
INSEN, R. A., AND KATZUNG, B. G.: Simultaneously recorded oscillation
in membrane potentia **188. JENSEN, R. A., AND KATZUNG, B. G.: Simultaneously recorded oscillations**

in membrane potential and isometric contractile force from cardiac mus-

cle. Nature (Lond.) 217: 961-963, 1968.

189. JEWELL, B. R.: A reexam membrane potential and isometric contractile force from cardiac music el. Nature (Lond.) 217: 961-963, 1988.

189. JEWELL, B. R.: A reexamination of the influence of muscle length or myocardial performance. Circ. Res. 40:
-
-
- **199. JEWELL, B. R.: A reexamination of the influence of muscle length on myocardial performance. Circ. Res. 40: 221-230, 1977.**
 190. JOHNSON, E. A., AND LIEBERMAN, M.: Heart: excitation and contraction.

Annu. Rev. Phy plasmic reticulum vesicles. J. Pharmacol. Circ. Res. 40: 221–230, 1977.

190. JOHNSON, E. A., AND LEBERMAN, M.: Heart: excitation and contraction.

Annu. Rev. Physiol. 33: 479–532, 1971.

191. JONES, L. R., BESCH, H. R., J
-
- of β -adrenergic regulation of the Ca channel in the guinea-pig heart. ogeneity of cardiac sarcoplasmic reticulum vesicles. J. Biol. Chem. 256:

1809–11818, 1981.

1809–11818, 1981.

1809–11818, 1981.

1808–11818, MAEYAMA, M., HOPMANN, F., AND TRAUTWEIN, W.: On the mechanism

of β -adrener
-
- Philgers Arch. 405: 285-293, 1985.

194. KARAGUEUZIAN, H. S., AND KATZUNG, B. G.: Voltage-clamp studies of

transient inward current and mechanical oscillations induced by ouabain

in ferret papillary muscle. J. Physiol. (transient inward current and mechanical oscillations induced by ouabain
in ferret papillary muscle. J. Physiol. (Lond.) 327: 255–271, 1982.
Ass, R. S., LEDERRR, W. J., TSIEN, R. W., AND WEINGART, R.: Role of
calcium ions i 198. KASS, R. S., LEDERER, W. J., TSIEN, R. W., AND WEINGART, R.: Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibres. J. Physiol. (Lond.) 281:
187-2
- calcium ions in transient inward currents and aftercontractions induced
187–208, 1973.
1877-208, 1973.
1877-208, 1973.
1878. R. S., TSIEN, R. W., AND WEINGART, R.: Ionic basis of transient
inward current induced by stropha
- Physiol. (Lond.) 281: 209-226, 1978.

1896. KASS, R. S., TSIEN, R. W., AND WEINGART, R.: Ionic basis of transient

inward current induced by strophanthidin in cardiac Purkinje fibres. J.

Physiol. (Lond.) 281: 209-226, 197 inward current induced by strophanthidin in cardiac Purkinje fibres. J.
Physiol. (Lond.) 281: 209-226, 1978.
197. KATZ, A. M., LOUIS, C. F., NASH-ADLER, P., MESSINEO, F. C., AND
SHIGEKAWA, M.: Ca²⁺-dependent oscillations Physiol. (Lond.) 281: 209-226, 1978.

Arz, A. M., Louis, C. F., Nash-AbLER, P., MESSINEO, F. C., AND

SHIGEKAWA, M.: Ca^{a+}-dependent oscillations in the calcium content of

cardiac sarcoplasmic reticulum vesicles. In Adva
- myocardium. Naunyn-Schmiedeberg's Arch. Pharmacol. 289: 1-28, 1975. ence of calcium permeability of sarcoplasmic reticulum vesicles on exter-
171. HONERJÄGER, P., AND REITER, M.: Sarcolemmal sodium permeability and
contrac 198. **KATZ, A. M., REPKE, D. I., DUNNETT, J., AND HASSELBACH, W.: Dependence of calcium permeability of sarcoplasmic reticulum vesicles on ext** INOTROPIC MECHANISMS 213
ATZ, A. M., REPKE, D. I., DUNNETT, J., AND HASSELBACH, W.: Depend-
ence of calcium permeability of sarcoplasmic reticulum vesicles on exter-
nal and internal calcium ion concentrations. J. Biol. Ch 199. KATZ, A. M., REPKE, D. I., DUNNETT, J., AND HASSELBACH, W.: Dependence of calcium permeability of sarcoplasmic reticulum vesicles on ex
nal and internal calcium ion concentrations. J. Biol. Chem. 252: 19
199. KATZ, A.
	- ence or calcium permeability or sarcoplasmic reticulum vesicles on exter-
nal and internal calcium ion concentrations. J. Biol. Chem. 252: 1950-
1956, 1977.
199. KATZ, A. M., REPKE, D. I., AND HASSELBACH, W.: Dependence of and caffeine-induced calcium release from sarcoplasmic reticulum vesicles
on external and internal calcium ion concentrations. J. Biol. Chem. 262:
1938–1949, 1977.
200. KATZUNG, B.: Diastolic oscillation in muscle tension 201. Kauf Mann and internal calcium ion concentrations. J. Biol. Chem. 252:
200. KATZUNG, B.: Diastolic oscillation in muscle tension and length. J. Cell.
201. KAUFMANN, R., FLECKENSTEIN, A., ANTONI, H., AND WOLF, H.: Ursa
	-
	- 201. KAUFMANN, R., FLECKENSTEIN, A., ANTONI, H., AND WOLF, H.: Ursachen und Auslösungsbedingungen von Myokard-Kontraktionen ohne reguläres Aktionspotential. Pflügers Arch. 278: 435–446, 1963. ATZUNG, B.: Diastolic oscillation in muscle tension an Comp. Physiol. 64: 103–114, 1964.
AUFMANN, R., FLECKENSTEIN, A., ANTONI, H., AND WORLAND und Auslösungsbedingungen von Myokard-Kontraktion
Aktionspotential. Pflügers A Comp. Physiol. 64: 103-114, 1964.

	201. KAUFMANN, R., FLECKENSTEIN, A., ANTONI, H., AND WOLF, H.: Ursachen

	und Auslösungsbedingungen von Myokard-Kontraktionen ohne reguläres

	Aktionspotential. Pflügers Arch. 278: 436-446
	-
	- und Auslösungsbedingungen von Myokard-Kontraktionen ohne reguläres
Aktionspotential. Pflügers Arch. 278: 435-446, 1963.
202. KAUMANN, A. J., AND BLINKS, J. R.: Stimulant and depressant effects of
 β -adrenoreceptor blocki
	- aftercontractions and action potentials in cat papillary muscles. Science (Wash. DC) 161: 293-295, 1968.
AVALER, F.: Electromechanical time course in frog ventricle: manipulation of calcium level during voltage clamp. J. M 204. KAVALER, F.: Electromechanical time course in frog ventricle: manipulation
of calcium level during voltage clamp. J. Mol. Cell. Cardiol. 6: 575-580,
1974.
205. KAVALER, F., ANDERSON, T. W., AND FISHER, V. J.: Sarcolem
	- 62. 142. 206. KIMURA, J., MIYAMAE, S., AND FORMATION AND FIGURE TO A 1. Sarcolemmal site of caffeine's inotropic action on ventricular muscle of the frog. Circ. Res.
42: 285-290, 1978.
42: 206. KIMURA, J., MIYAMAE, S., AND
	- EXALER, F., ANDERSON, T. W., AND FISHER, V. J.: Sarcolemmal site of caffeine's inotropic action on ventricular muscle of the frog. Circ. Res. 42: 285-290, 1978.

	142: 285-290, 1978.

	12. MIYAMAR, S., AND NOMA, A.: Identifi caffeine's inotropic action on ventricular muscle of the frog. Circ. R.

	42: 285-290, 1978.

	206. KIMURA, J., MIYAMAR, S., AND NOMA, A.: Identification of sodium-calcius

	exchange current in single ventricular cells of gui
	-
	- 206. KIMURA, J., MYAMAR, S., AND NOMA, A.: Identification of sodium-calcium
exchange current in single ventricular cells of guinea-pig. J. Physiol.
(Lond.) 384: 199-222, 1987.
207. KING, B. W., AND BOSE, D.: Mechanism of b reticular muscle. Circ. Res. 52: 65-75, 1983.

	208. KIRCHBERGER, M. A., TADA, M., AND KATZ, A. M.: Adenosine 3':5'-

	monophosphate-dependent protein kinase-catalyzed phosphorylation re-

	action and its relationship to calc
	-
	- guinea-pig ventricular muscle. J. Physiol. (Lond.) **355:** 635-659, 1984.
211. **KITAZAWA, T., SOMLYO, A. P., AND SOMLYO, A. V.: The effects of valino-**
	- mycin on ion movements across the sarcoplasmic reticulum in frog muscle.
J. Physiol. (Lond.) 350: 253–268, 1984. **J. Physiol. (Lond.) 350: 253-268, 1984.**
 J. Physiol. (Lond.) 355: 635-659, 1984.
 Physiol. (Lond.) 255: 635-659, 1984.
 Physiol. (Lond.) 350: 253-268, 1984.
 D. Physiol. (Lond.) 350: 253-268, 1984.
 Physiol. (Lo
	- **increasure Stimulation**, A. P., AND SOMLYO, A. V.: The effects of valino-
mycin on ion movements across the sarcoplasmic reticulum in frog muscle.
J. Physiol. (Lond.) 350: 253-268, 1984.
COH-WESER, J.: Effect of systolic J. Physiol. (Lond.) 350:
SCH-WESER, J.: Effect
isolated myocardium. In
F. Cranefield and B. F. H
Press, New York, 1968.
SCH-WESER, J., AND BLI. 212. Koch-WESER, J.: Effect of systolic activity on diastolic compliance of
isolated myocardium. In Paired Pulse Stimulation of the Heart, ed. by P.
F. Cranefield and B. F. Hoffman, pp. 145–154, The Rockefeller University
 isolated myocardium. *In* Paired Pulse Stimulation of the Heart, ed. by P.
F. Cranefield and B. F. Hoffman, pp. 145–154, The Rockefeller University
213. KocH-WESER, J., AND BLINKS, J. R.: The influence of the interval betw
	-
	- Press, New York, 1968.

	213. KOCH-WESER, J., AND BLINKS, J. R.: The influence of the interval between

	beats on myocardial contractility. Pharmacol. Rev. 15: 601-652, 1963.

	214. KOHLHARDT, M., AND FLECKENSTEIN, A.: Inhibi Schmiedeberg's Arch. Pharmacol. 298: 267-272, 1977.

	Schmiedeberg's Arch. Pharmacol. 298: 267-272, 1977.

	215. KOKOBUN, S., AND REUTER, H.: Dihydropyridine derivatives prolong the

	open state of Ca channels in cultured car 214. KOHLHARDT, M., AND FLECKENSTEIN, A.: Inhibition of the slow inward
current by nifedipine in mammalian ventricular myocardium. Naunyn-
Schmiedeberg's Arch. Pharmacol. 298: 267-272, 1977.
215. KOKOBUN, S., AND REUTER, H
	-
	- open state of Ca channels in cultured cardiac cells. Proc. Natl. Acad. Sci.
USA 81: 4824-4827, 1984.
216. KONISHI, M., KURIHARA, S., AND SAKAI, T.: The effects of caffeine on
tension development and intracellular calcium t
	-
	- 217. KORECKY, B., AND MICHAEL, L. H.: Regional differences in contractions of
mammalian hearts. Recent Adv. Stud. Card. Struct. Metab. 4: 77-87,
1974.
218. KORTH, M.: Effects of several phosphodiesterase-inhibitors on guin
- Ryanodine-induced stimulation of net Ca⁺⁺ uptake by cardiac sarco-

plasmic reticulum vesicles. J. Pharmacol. Exp. Ther. 209: 48-55, 1979.

192. JONES, L. R., AND CALA, S. E.: Biochemical evidence for functional heter-
 myocardium. Naunyn-Schmiedeberg's Arch. Pharmacol. 302: 77-86, 1978.

219. KORTH, M., AND ENGELS, J.: The effects of adenosine- and guanosine 3',5'-

phosphoric acid benzyl esters on guinea-pig ventricular myocardium.

Nau
	- Naunyn-Schmiedeberg's Arch. Pharmacol. 310: 103-111, 1979.
ORTH, M., AND ENGELS, J.: Inotropic and electrophysiological effects of
8-substituted cyclic AMP analogues on guinea-pig papillary muscle. Nau-
nyn-Schmiedeberg's
	- 221. KORTH, M., AND KUHLKAMP, V.: Muscarinic receptor-mediated increase of intracellular Na⁺-ion activity and force of contraction. Pflügers Arch. 403: 266-272, 1985. 220. KORTH, M., AND ENGELS, J.: Inotropic and electrophysiological effects of
8-substituted cyclic AMP analogues on guinea-pig papillary muscle. Nau-
nyn-Schmiedeberg's Arch. Pharmacol. 335: 77-85, 1987.
221. KORTH, M., AN
	- intracellular Na⁺-ion activity and force of contraction. Pflügers Arch.
403: 266-272, 1985.
222. KORTH, M., AND KÜHLKAMP, V.: Muscarinic receptors mediate negative
and positive inctorpic effects in mammalian ventricular
	- 222. KORTH, M., AND KUHLKAMP, V.: Muscarinic receptors mediate negative

	and positive inotropic effects in mammalian ventricular myocardium:

	differentiation by agenists. Br. J. Pharmacol. 90: 81-90, 1987.

	223. KORTH, M.
	-
	- Ia revocytes. Circ. Res. 62: 1080-1087, 1988.

	224. KRAYER, O: Versuche em insuffizienten Herzen. Arch. Exp. Pathol. Pharmakol. 162: 1-28, 1931.

	225. KRUTA, V.: Sur l'activité rythmique du muscle cardiaque. I. Variations la réponse mécanique en fonction du rythme. Arch. Int. Physiol. 45: 332-
	- 225. KRUTA, V.: Sur l'activité rythmique du muscle cardiaque. I. Variations de
la réponse mécanique en fonction du rythme. Arch. Int. Physiol. 45: 332-
357, 1937.
226. KUKOVETZ, W. R., AND POCH, G.: Cardiostimulatory effec

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

spet

- 227. KURIHARA, S., AND KONISHI, M.: Effects of β-adrenoceptor stimulation in 251. MARTONOSI, A. N.: Mechanisms of Ca²⁺ release from sarcoplasmic reticulintracellular Ca⁺⁺ transients and tension in rat ventricular musc intracellular Ca⁺⁺ transients and tension in rat ventricular muscle. Pflug-214 REITEI

227. KURIHARA, S., AND KONISHI, M.: Effects of β -adrenoceptor stimulation in

intracellular Ca⁺⁺ transients and tension in rat ventricular muscle. Pflug-

ers Arch. 409: 427-437, 1987.

228. KURIHARA, S.,
-
-
- Evidence for a Ca³⁺ channel within the ryanodine receptor complex from cardiac sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 151: 441-449, 1988.
229b. Lai, F. A., ERICKSON, H. P., ROUSSEAU, E., LIU, Q. Y., AND M 229a. Lu, F. A., ANDERSON, K., ROUSSEAU, E., LIU, Q. Y., AND MEISSNER, G.:

Evidence for a Ca²⁺ channel within the ryanodine receptor complex from

cardiac sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 151:

255
- cardiac sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 151: 21

230. LAI, F. A., ERICKSON, H. P., ROUSSEAU, E., LIU, Q. Y., AND MEISSNER,

G: Purification and reconstitution of the calcium release channel from

ske
- G: Purification and reconstitution of the calcium release
skeletal muscle. Nature (Lond.) 331: 315-319, 1988.
KATTA, E. G., CAPOGROSSI, M. C., KORT, A. A., AND 5
Spontaneous myocardial calcium oscillations: overview with
r 230. LAKATTA, E. G., CAPOGROSSI, M. C., KORT, A. A., AND STERN, M. D.:
230. LAKATTA, E. G., CAPOGROSSI, M. C., KORT, A. A., AND STERN, M. D.:
231. LAKATTA, E. G., AND LAPPÉ, D. L.: Diastolic scattered light fluctuation
231
-
- 230. LAKATTA, E. G., CAPOGROSSI, M. C., KORT, A. A., AND STERN, M. D.:

Spontaneous myocardial calcium oscillations: overview with emphasis on

ryanodine and caffesine. Fed. Proc. 44: 2977-2983, 1985.

231. LAKATTA, E. G. 232. LAMERS, J. M. J., STINIS, H. T., AND DEJONGE, H. R.: On the role of cyclic
AMP and Ca²⁺-calmodulin-dependent phosphorylation in the control of
 $(Ca^{2+} + Mg^{2+})$ -ATPase of cardiac sarcolemma. FEBS Lett. 127: 139-143,
2
-
- (Ca²⁺ + Mg²⁺)-ATPase of cardiac sarcolemma. FEBS Lett. 127: 139-143,
1981.
233. LANGER, G. A.: Kinetic studies of calcium distribution in ventricular muscle
of the dog. Circ. Res. 15: 393-405, 1964.
234. LANGER, G. A.:
- **333. LANGER, G. A.: Kinetic studies of calcium distribution in ventricular muscle**
of the dog. Circ. Res. 15: 393-405, 1964.
35: 55-86, 1973.
235: LATTANZIO, F. A., JR., SCHLATTERER, R. G., NICAR, M., CAMPBELL, K. P., ANGER, G. A.: Heart: excitation-contraction coupling. Ann. Rev. Physiol.
35: 55-86, 1973.
ATTANZIO, F. A., JR., SCHLATTERER, R. G., NICAR, M., CAMPBELL, K. P.,
AND SUTKO, J. L.: The effects of ryanodine on pessive calcium 236. LATTANZIO, F. A., JR., SCHLATTERER, R. G., NICAR, M., CAMPBELL, K. P., AND SUTKO, J. L.: The effects of ryanodine on passive calcium fluxes across sarcoplasmic reticulum membranes. J. Biol. Chem. 262: 2711-2236. LEDER ARREY SUTKO, J. L.: The effects of ryanodine on passive calcium fluxecrose sarcoplasmic reticulum membranes. J. Biol. Chem. 262: 2711
2718, 1967.
EDERRER, W. J., AND TSIEN, R. W.: Transient inward current underlying
to FIR
- across sarcopiasmic reticulum membranes. J. Biol. Chem. 202: 2711-
236. LEDERER, 1987.
236. LEDERER, W. J., AND TSIEN, R. W.: Transient inward current underlying
arrhythmogenic effects of cardiotonic steroids in Purkinje f
-
- in mammalian heart cells: joint dependence on membrane potential and
intracellular calcium. J. Physiol. (Lond.) 364: 395-411, 1985.
237a. LEE, K. S., AND TSIEN, R. W.: Mechanism of calcium channel blockade
by verapamil, D6 237. LEE, K. S., AND TSIEN, K. W.: Mechanism or calcium channel blockade
by verapamil). D600, diltiarsen and activation is single dialysed heart
cells. Nature (Lond.) 202: 790-794, 1983.
239. LEOTY, C.: Membrane currents a
- cells. Nature (Lond.) 3023: 790–794, 1983.
IOTY, C.: Membrane currents and activation of contraction
ular fibres. J. Physiol. (Lond.) 239: 237–249, 1974.
Iory, C., AND RAYMOND, G.: Mechanical activity and ion
frog atrial t
-
- 238. LEOTY, C.: Membrane currents and activation of contraction in rat ventre ular fibres. J. Physiol. (Lond.) 239: 237–249, 1974.

239. LEOTY, C., AND RAYMOND, G.: Mechanical activity and ionic currents frog atrial trabec ular fibres. J. Physiol. (Lond.) 239: 237-249, 1974.

EOTY, C., AND RAYMOND, G.: Mechanical activity and ionic currents in

frog atrial trabeculae. Pflügers Arch. 334: 114-128, 1972.

EWARTOWSKI, B., PROKOPCZUK, A., AND PY hearts. Pflogers Arch. 334: 114-128, 1972.

240. LEWARTOWSKI, B., PROKOPCZUK, A., AND PYTKOWSKI, B.: Effect of inhibitors of slow calcium current on rested state contraction of papillary

muscles and post rest contractions
- itors of slow calcium current on rested state contraction of papillary
muscles and post rest contractions of atrial muscle of the cat and rabbit
hearts. Pflugers Arch. 377: 167-175, 1978.
EWARTOWSEY, B., PYTKOWSEY, B., AND
- tion correlating with contractile force of ventricular muscle of guinea-pig heart. Pflügers Arch. 401: 198–203, 1984.
IPP, P., AND POTT, L.: Ca-dependent inactivation of Ca current causes apparent reversal of transient inw
- heart. Pflügers Arch. 401: 198-203, 1984.

242. LIPP, P., AND POTT, L.: Ca-dependent inactivation of Ca current causes

apparent reversal of transient inward current in single cardiac myocytes.

J. Physiol. (Lond.) 381: 92 income in the term of the P. (Lond.) 381: 92P, 1986.

243. Lipp, P., AND GPOT, L.: Transient inward current in guinea-pig atrial

myocytes reflects a change of sodium-calcium
- PP, P., AND POTT, L.: Transient inward current in guinea-pig atrial myocytes reflects a change of sodium-calcium exchange current. J. Physiol. (Lond.) 397: 601-630, 1988.
PSIUS, S. L., AND GEBDONS, W. R.: Membrane currents iol. (Lond.) 397: 601–630, 1988.
IPSIUS, S. L., AND GIBBONS, W. R.: Membrane currents, contractions, and
aftercontractions in cardiac Purkinje fibers. Am. J. Physiol. 243: H77-
H86, 1982.
ONDON, B., AND KRUEGER, J. W.: Con 245. LONDON, B., AND GEBBONS, W. R.: Membrane currents, contractions, an aftercontractions in cardiac Purkinje fibers. Am. J. Physiol. 243: H77
H86, 1982.
LONDON, B., AND KRUEGER, J. W.: Contraction in voltage-clamped, int 272.
246. London: American Scheme Purkinje fibers. Am. J. Physiol. 243: H77-
246. London, B., AND KRUEGER, J. W.: Contraction in voltage-clamped, inter-
246. LorroAu, H. C., GoTTSCHALK, G., AND BERWE, D.: The effect of cal
-
- **and** Ca antagonists upon excited contraction in voltage-clamped, internally perfused single beart cells. J. Gen. Physiol. 88: 475-505, 1986.
 and Ca antagonists upon excitation-contraction coupling. Can. J. Physiol.
 C 246a. LOTTGAU, H. C., GOTTSCHALK, G., AND BERWE, D.: The effect of calcium 273. 1

246a. LOTTGAU, H. C., GOTTSCHALK, G., AND BERWE, D.: The effect of calcium 273. 1

274. Intermacol. 685: 717-723, 1987.

274. LOTTGAU, H.
- and Ca antagonists upon excitation-contraction coupling. Can. J. Physiol.

Pharmacol. 65: 717-723, 1987.

246a. LOTTGAU, H. C., GOTTSCHALK, G., KOVÁCS, L., AND FUXREITER, M.: How

perchlorate improves excitation-contractio
-
- perchiorate improves excitation-contraction coupling in skeletal muscle
fibers. Biophys. J. 43: 247-249, 1983.
247. LOTTGAU, H. C., AND SPIECKER, W.: The effects of calcium deprivation
upon mechanical and electrophysiologi of the sarcoplasmic reticulum and transmeters in skeletal muscle
fibres of the frog. J. Physiol. (Lond.) 296: 411-429, 1979.
ALECOT, C. O., BERS, D. M., AND KATZUNG, B. G.: Biphasic contractions
induced by milrinone at low Rae. 59: 151-162, 1986.

248. MALECOT, C. O., BERS, D. M., AND KATZUNG, B. G.: Biphasic contractions

induced by milrinone at low temperature in ferret ventricular muscle: role

of the sarcoplasmic reticulum and transmembr induced by milrinone at low temperature in ferret ventricular muscle: role of the sarcoplasmic reticulum and transmembrane calcium influx. Circ.
Res. 59: 151-162, 1986.
ALECOT, C. O., AND KATZUNG, B. G.: Use dependence of
- Res. 59: 151-162, 1986.

249. MALECOT, C. O., AND KATZUNG, B. G.: Use dependence of ryanodine effects

on postrest contraction in ferret cardiac muscle. Circ. Res. 60: 560-567,

250. MARBAN, E., RINK, T. J., TSIEN, R. W.,
- heart muscle at rest and during contraction measured with Ca'-sensitive monotherst contraction in ferret cardiac muscle. Circ. Res. 60: 560-567, 1987.
ARBAN, E., RINK, T. J., TSIEN, R. W., AND TSIEN, R. Y.: Free calcium in
- 2**61.**
251. **MARTONOSI, A. N.: Mechanisms of Ca²⁺ release from sarcoplasmic reticular of skeletal muscle. Physiol. Rev. 64: 1240–1320, 1984.**
- ER
251. MARTONOSI, A. N.: Mechanisms of Ca²⁺ release from sarcoplasmic reticu-
lum of skeletal muscle. Physiol. Rev. 64: 1240-1320, 1984.
252. MASCHER, D.: Electrical and mechanical events in depolarized cardiac
muscle f MRTONOSI, A. N.: Mechanisms of Ca²⁺ release from sarcoplasmic reticu-
hum of skeletal muscle. Physiol. Rev. 64: 1240–1320, 1964.
ASCHER, D.: Electrical and mechanical events in depolarized cardiac
muscle fibers during lo lum of skeletal muscle. Physiol. Rev. 64: 1240-1320, 1984.
252. MASCHER, D.: Electrical and mechanical events in depolarized cardiac
muscle fibers during low sodium perfusion. Pflügers Arch. 323: 284-296,
1971.
253. MASCHE
-
- electrical responses in ventricular muscle of guinea-pig. J. Physiol. (Lond.)

229. KUWAYAMA, T. A., ANDERSON, A., A., ANDERSON, A., T. Purification of cardiac sarcolemmal

229. KUWAYAMA, T. A., AND MENAZAWA, T.: Purificat 1971.
ASCHER, D.: Electrical and mechanical responses in ventricular muscle
fibers during barium perfusion. Pflügers Arch. 342: 325–346, 1973.
ASCHER, D., BERESEWICZ, A., AND ISENBERG, G: The slow inward calcium
current (i fibers during barium perfusion. Pflügers Arch. 342: 325-346, 1973.
254. MASCHER, D., BERESEWICZ, A., AND ISENBERG, G: The slow inward calcium
current (i_{Ca}) of mammalian ventricular cells is componed of a component
due to
	- current (i_{Ca}) of mammalian ventricular cells is composed of a component
due to transsarcolemmal Ca entry (i_E) and a component due to Ca release
from the SR (i_E). Pflügers Arch. 402: R23, 1984.
ASCHER, D., AND CRUZ, A p. 570, 1980. 256. MASCHER, D., AND CRUZ, A.: Electrical and mechanical responses of the guinea-pig ventricular muscle in the presence of histamine. (abstract) *In* Proceedings of the 28th International Physiological Congr
	- Froceedings of the 28th International Physiological Congress, Budapes
p. 570, 1980.
256. MATHIAS, R. T., LEVIS, R. A., AND EISENBERG, R. S.: Electrical models of
excitation-contraction coupling and charge movement in skele
	- **ATHIAS, K. T., LEVIS, K. A., AND EISENBERG, R. S.: Electrical models of excitation-contraction coupling and charge movement in skeletal muscle.**
J. Gen. Physiol. 76: 1–31, 1980.
ATSUDA, H., NOMA, A., KURACHI, Y., AND IRIS excitation-contraction coupling and charge movement in skeletal muscle.

	J. Gen. Physiol. 76: 1-31, 1980.

	257. MATSUDA, H.: Transient depo-

	larization and spontaneous voltage fluctuations in isolated single cells

	from g
	- ATSUDA, H., NOMA, A., KURACHI, Y., AND IRISAWA, H.: Transient depo-
larization and spontaneous voltage fluctuations in isolated single cells
from guinea pig ventricles. Circ. Res. 51: 142-151, 1982.
AURER, A., TANAKA, M., **259. MAURER, A., TANAKA, M., OZAWA, T., AND FLEISCHER, S.: Purification and crystallization of the calcium binding protein of aarcoplasmic reticulum from skeletal muscle. Proc. Natl. Acad. Sci. USA 82: 4036-4040, 1985.

	2**
	- dial phosphorylase by catecholamines. J. Phosphorylase by categorial phosphorylase
	- AYER, S. E., COTTEN, M. DEV., AND MORAN, N. C.: Dissociation of the augmentation of cardiac contractile force from the activation of myocardial phosphorylase by catecholamines. J. Pharmacol. 139: 275–282, 1963. AYLIE, J., expression. (Cardiac contractile force from the activation of myocardial phosphorylase by catecholamines. J. Pharmacol. 139: 275-282, 1983.

	260. MAYLIE, J., AND MORAD, M.: A transient outward current related to calcium re
	-
	- **262. Mechannes and development of tension in elephant seal atrial fibres. J.

	261. McNurr, N. S.: Ultrastructure of the myocardial sarcolemma. Circ. Res.

	27: 1-13, 1975.

	282. MECHMANN, S., AND POTT, L.: Identification o Single cardiac Mystol.** (Lond, 359: 267-292, 1984.

	261. McNUT, N. S.: Ultrastructure of the myocardial sarcolemma. Circ. Res.

	262. MECHMANN, S., AND POTT, L.: Identification of Na-Ca exchange current in

	single cardiac
	-
	- 37: 1-13, 1975.

	262. MECHMANN, S., AND POTT, L.: Identification of Na-Ca exchange current in

	single cardiac myocytes. Nature (Lond.) 319: 597-599, 1986.

	263. MEISSNER, G.: Ryanodine activation and inhibition of the Ca 263. MEISSNER, G.: Ryanodine activation and inhibition of the Ca²⁺ release
channel of sarcoplasmic reticulum. J. Biol. Chem. 261: 6300-6306, 1966.
264. MELEER, W., SCHNEIDER, M. F., SIMON, B. J., AND SZUCS, G.: Intramem-
	-
	- contraction coupling in frog twitch muscle fibres. J. Physiol. (Lond.) 351:
687–710, 1984.
ILLER, J. P., BOSWELL, K. H., MEYER, R. B., JR., CHRISTENSEN, L. F.,
AND ROBINS, R. K.: Synthesis and enzymatic and inotropic activ **come now Secure 2.1**
 come of Secure 2.1
 come of Secure 2.1
 **come now S-substituted and 6,8-disubstituted derivatives of a

	come now 8-substituted and 6,8-disubstituted derivatives of a

	cyclic 3',5'-monophosphate.** 266. MILLER, J. P., BOSWELL, K. H., MEYER, R. B., JR., CHRISTENSEN, L. F.,
AND ROBINS, R. K.: Synthesis and enzymatic and inotropic activity of
some new 8-substituted and 6,8-disubstituted derivatives of adenosine
cyclic 3
	-
- hearts. Pflugers Arch. 377: 167-175, 1978.

241. LEWARTOWSKY, B., PYTKOWSKY, B., AND JANCZEWSKY, A.: Calcium frac-

241. LEWARTOWSKY, B., PYTKOWSKY, B., AND JANCZEWSKY, A.: Calcium frac-

242. LIPP, P., AND MORAD, M.: Two effects of reactions. The Textes of Textes of reaction in rate ventricular muscle cells. Br. J. Pharmacol. 81: 13-15, 1984.

The ventricular muscle cells. Br. J. Pharmacol. 81: 13-15, 1984.

The effects of ryanodine, EGTA, 268. MITCHELL, M. R., POWELL, T., TERRAR, D. A., AND TWIST, V. W.: The effects of ryanodine, EGTA, and low-sodium on action potentials in rat and guinea-pig ventricular myocytes: evidence for two inward currents during the
	-
	- **ventricular myocytes. Proc. Natl. Acad.** Sci. USA 83: 5340-5344, 1986.
	- and guinea-pig ventricular myocytes: evidence for two inward currents
during the plateau. Br. J. Pharmacol. 81: 543-550, 1984.
Mrra, R., AND MORAD, M.: Two types of calcium channels in guinea-pig
ventricular myocytes. Proc minal cisternae of skeletal sarcoplasmic reticulum. FEBS Lett. 133: 235-238, 1981.

	ORAD, M., AND GOLDMAN, Y.: Excitation-contraction coupling in heart

	muscle: membrane control of development of tension. In Progress in

	B 271. MORAD, M., AND GOLDMAN, Y.: Excitation-contraction coupling in heart
muscle: membrane control of development of tension. In Progress in
Biophysics and Molecular Biology, ed. by J. A. V. Butler and D. Noble,
vol. 27,
	-
	-
	- myocytes and sarcoplasmic reticulum. FEBS 1982.

	The cat papillary muscle. Can. J. Physiol. Pharmacol. 60: 524-528, 1982.

	274. MOVSESIAN, M. A., THOMAS, A. P., SELAK, M., AND WILLIAMSON, J. R.:

	Inositol trisphosphate doe
	- 274. MOVSESIAN, M. A., THOMAS, A. P., SELAK, M., AND WILLIAMSON, J. R.:

	Inositol trisphosphate does not release Ca²⁺ from permeabilized cardiac

	myocytes and ascroplasmic reticulum. FEBS Lett. 1885: 328-342, 1986.

	276. Ca exchange. Am. J. Physiol. Physiol. Physiol. Physiol. Physiol. Physiol. Physiol. Physiol. Calcium movement in skeletal and cardiac muscle. Can. J.
Physiol. Pharmacol. 60: 529-541, 1982.
276. MULLINS, L. J.: The generatio
	-
	- Physiol. Pharmacol. 60: 529-541, 1982.

	276. MULLINS, L. J.: The generation of electric currents in cardiac fibers by Na/

	Ca exchange. Am. J. Physiol. 236: C103-C110, 1979.

	277. MULLINS, L. J.: An electrogenic saga: cons release channel of sarcoplasmic release. In Electropenic Transport: Fundamental Principles and Physiological Implications, ed. by M. P. Blaustein and M. Lieberman, pp. 161-179, Raven Press, New York, 1984.
278. NAGASAKI, K
	-
	- Lieberman, pp. 161–179, Kaven Press, New York, 1984.
AGASAKI, K., AND FLEISCHER, S.: Ryanodine sensitivity of the calcium
release channel of sarcoplasmic reticulum. Cell Calcium 9: 1–7, 1988.
ATHAN, D., AND BEELER, G. W.,

spet

ARMACOLO

spet

-
- CALCIUM MOBILIZATION AND CAR

280. NATORI, R.: The property and contraction process of isolated myofibrils.

Jitelikai Med. J. 1: 119-126, 1964.

281. NAYLER, W. G.: Effect of inotropic agents on canine trabecular muscle

- 31. NAYLER, W. G.: Effect of inotropic agents on canine trabecular muscle
rendered highly permeable to calcium. Am. J. Physiol. 225: 918-924,
1973.
282. NAYLER, W. G.: The cardiac cell. *In* Contraction and Relaxation in t 282. NAYLER, W. G.; The cardiac cell. *In* Contraction and Relaxation in the Myocardium, ed. by W. G. Nayler, pp. 1–28, Academic Press, London, 1975.
1973.
283. NAYLER, W. G., DAILE, P., CHIPPERFIELD, D., AND GAN, K.: Effe
-
- 283. NAYLER, W. G., DAILE, P., CHIPPERFIELD, D., AND GAN, K.: Effect of ryanodine on calcium in cardiac muscle. Am. J. Physiol. 219: 1620-1626, 1970.
284. NAYLER, W. G., DUNNETT, J., AND BERRY, D.: The calcium accumulating ryanodine on caicium in cardiac muscle. Am. J. F.
1970.
AYLER, W. G., DUNNETT, J., AND BERRY, D.: T.
activity of subcellular fractions isolated from r
muscle. J. Mol. Cell. Cardiol. 7: 275–288, 1975.
JEUHAUS, R.: The effec
- 1970.

284. NAYLER, W. G., DUNNETT, J., AND BERRY, D.: The calcium accumulating

activity of subcellular fractions isolated from rat and guinea pig heart

muscle. J. Mol. Cell. Cardiol. 7: 275-288, 1975.

284a. NEUHAUS, R.
- muscle. J. Mol. Cell. Cardiol. 7: 276-288, 1976.

284a. NEUHAUS, R.: The effect of nifedipine on slow Ca²⁺ inward current and

force development in isolated skeletal muscle fibres of the frog. J. Physiol.

(Lond.) 882: 1 force development in isolated skeletal muscle fibres of the frog. J. Physiol.
(Lond.) 382: 122P, 1987.
285. NEYSES, L., REINLIB, L., AND CARAFOLI, E.: Phosphorylation of the Ca²⁺-
pumping ATPase of heart sarcolemma and e during ATPase of heart sarcolemma and erythrocyte plasma membrane
by the cAMP-dependent protein kinase. J. Bio. Chem. 260: 10283-10287,
1965.
286. NIEDERGERKE, R.: Movements of Ca in frog heart ventricles at rest and
durin
-
-
- 1985.

1985.

286. NIEDERGERKE, R.: Movements of Ca in frog heart ventricles at rest and

during contractures. J. Physiol. (Lond.) 167: 515-550, 1963.

287. NIEDERGERKE, R.: Movements of Ca in beating ventricles of the fro during contractures. J. Physiol. (Lond.) 167: 515-550, 1963.
IEDERGERKE, R.: Movements of Ca in beating ventricles of the frog heart.
J. Physiol. (Lond.) 167: 551-580, 1963.
IEDERGERKE, R., AND PAGE, S.: Analysis of caffei
- 446, 1985. 290. NILIUS, B., HESS, P., LANSMAN, J. B., AND TSIEN, R. W.: A novel type of cardiac calcium channel in ventricular cells. Nature (Lond.) 316: 443-
446, 1985.
290. NisHio, M., KIGOSHI, S., AND MURAMATSU, I.: Ryanodine has
- ILIUS, B., HESS, P., LANSMAN, J. B., AND TSIEN, R. W.: A novel type of cardiac calcium channel in ventricular cells. Nature (Lond.) 316: 443-446, 1985.
1446, 1985.
1981 O. M., KIGOSHI, S., AND MURAMATSU, I.: Ryanodine has 290. NISHIO, M., KIGOSHI, S., AND MURAMATSU, I.: Kyanodine has no effect on
the Ca current in single ventricular cells of guinea-pig. Eur. J. Pharmacol.
124: 353-356, 1986.
291. NOBLE, D: The surprising heart: a review of
- **291. NOBLE, D: The surprising heart: a review of recent progress in cardiac**
-
-
- depolarization and slow in the resting metabolism of frog sartorius muscle during potassium depolarization. J.
Cell. Physiol. 67: 159-168, 1966.
CHI. R., AND TRAUTWEIN, W.: The dependence of cardiac contraction on
depolari 294. OCHI. Physiol. 67: 159-168, 1966.

294. OCHI, R., AND TRAUTWEIN, W.: The dependence of cardiac contraction on depolarization and slow inward current. Pflugers Arch. 323: 187-203, 1971.

295. OETLIKER, H.: An appraisal
- HI, K., AND TRAUTWEIN, W.: The dependence of carduac contraction on
1971.
THE MEMEL and slow inward current. Pflügers Arch. 323: 187-203,
STLIKER, H.: An appraisal of the evidence for a sarcoplasmic reticulum
membrane pote depolarization and slow inward current. Pflügers Arch. 323: 187-203,
1971.
295. OETLIKER, H.: An appraisal of the evidence for a sarcoplasmic reticulum
membrane potential and its relation to calcium release in skeletal mus
-
- 295. USTLIKER, H.: An appraisal of the evidence for a sarcoplasmic reticulum
membrane potential and its relation to calcum release in skeletal muscle.
J. Muscle Res. Cell Mobility 3: 247-272, 1982.
296. OHBA, M.: Effects o
- 298. OSTERRIEDER, W., **BRUM,** G., HESCHELER, J., TRAUTWEIN, W., **FLOcKERZI,** MORCHARD, C. H., EISNER, D. A., AND ALLEN, D. G.: Oscillations of introduction of subunits of subunits of subunits of subunits of subsequent Translations of and the subsequent STAR 1983.
T38, 1983.
V., AND HOFMANN, F.: Inj cellular Ca²⁺ in mammalian cardiac muscle. Nature (Lond.) 304: 735-298. OSTERRIEDER, W., BRUM, G., HESCHELER, J., TRAUTWEIN, W., FLOCKERZI, V., AND HOPMANN, F.: Injection of subunits of cyclic AMP-dependent protein kinas V., AND HOPMANN, F.: Injection of subunits of cyclic AMP-dependent
protein kinase into cardiac myocytes modulates Ca^{2+} current. Nature
(Lond.) $298: 576-578, 1982$.
299. PAGE, E., AND MCCALLISTER, L. P.: Quantitative e
-
-
- **309. PAGE, E., AND MCCALLISTER, L. P.: Quantitative electron microscopic description of heart muscle cells. Am. J. Cardiol. 31: 172–181, 1973.**
300. PAGE, S. G., AND NIEDERGERKE, R.: Structures of physiological interest the frog heart ventricle. J. Cell. Sci. 11: 179–203, 1972.

301. PAPE, P. C., KONISHI, M., BAYLOR, S. M., AND SOMLYO, A. P.: Excitation-contraction coupling in skeletal muscle fibers injected with the InsP₃

blocker, hep
- contraction coupling in skeletal muscle fibers injected with the InsP₃
blocker, heparin. FEBS Lett. 235: 57-62, 1988.
302. PAPPANO, A. J.: Calcium-dependent action potentials produced by cate-
cholamines in guinea-pig at
-
- **contractile tension by ryanodine. Pfiugers Arch. 347:** 173-184, 1974. **304. PENEFSKY, Z. J.: Ultrastructural** studies of the site of action of ryanodine
- Circ. Res. 27: 379-390, 1970.

Circ. Res. 27: 379-390, 1970.

303. **PENEFSKY, Z. J.: Studies on mechanism of inhibition of cardiac muscle**

contractile tension by ryanodine. Pflügers Arch. 347: 173-184, 1974.

304. PENEFSK 306. PENEFSKY, Z. J., AND KAHN, M.: Mechanical and electrical effects of 332a.

7306. PENEFSKY, Z. J., AND KAHN, M.: Mechanical and electrical effects of 332a.

7306. PENEFSKY, J. T.: Plasma membrane Ca²⁺-pumping ATPases
-
- ryanodine on mammalian heart muscle. Am. J. Physiol. 218: 1682-1686,
1970.

RENNISTON, J. T.: Plasma membrane Ca²⁺-pumping ATPases. Ann. NY

Acad. Sci. 402: 296-303, 1982.

307. PESSAH, I. N., WATERHOUSE, A. L., AND CASI
-
- sarcolemmatical analysis of oscillatory and non-oscillatory and non-oscillatory recovery of contractility after a rested-state contrac-

and non-oscillatory recovery of contractility after a rested-state contrac-

ion and
- 310. POWELL, T., TATHAM, P. E. R., AND TWIST, V. W.: Cytoplasmic free

calcium measured by quin2 fluorescence in isolated ventricular myocytes INOTROPIC MECHANISMS 215

calcium measured by quin2 fluorescence in isolated ventricular myocytes

at rest and during potassium-depolarization. Biochem. Biophys. Res.

Commun. 122: 1012-1020, 1984.

-
- CHACTIVITATIONS

calcium measured by quin2 fluorescence in isolated ventricular myocytes

at rest and during potassium-depolarization. Biochem. Biophys. Res.

Commun. 122: 1012-1020, 1984.

311. RAGNARSDÓTTIR, K., WOHLFART
-
- restitution of the rat papillary muscle. Acts Physiol. Scand. 115: 183-
191, 1982.
111a. RAKOWSKI, R. F., BEST, P. M., AND JAMES-KRACKE, M. R.: Voltage
dependence of membrane charge movement and calcium release in frog
ske
- 314. RAVENS, U.: Electromechanical studies of an anemonia sulcata toxin in mammalian cardiac muscle. Naunyn-Schmiedeberg's Arch. Pharmacol. 2906: 73-78, 1976.
315. REEVES, J. P., AND HALE, C. C.: The stoichiometry of the
-
-
- 286. NIEDERGERKE, R.: Movements of Ca in frog heart ventricles at rest and 317. REEVES, J. P., AND SUTKO, J. L.: Sodium-calcium exchange activity gener-
during contractures. J. Physiol. (Lond.) 167: 515-550, 1963. 316. REEVES, J. P., AND SUTKO, J. L.: Sodium-calcium ion exchange in cardiac membrane vesicles. Proc. Natl. Acad. Sci. USA 76: 590-594, 1979.
317. REEVES, J. P., AND SUTKO, J. L.: Sodium-calcium exchange activity generates
- **289. NIEDERGERKE, R., AND PAGE, S.: Analysis of caffeine action in single unter Einwirkung von Calcium und von Digitalisglykosiden in Abhängig-

289. NIEDERGERKE, R., AND PAGE, S.: Analysis of caffeine action in single un** 318. REITER, M.: Die Entstehung von "Nachkontraktionen" im Herzmuskel unter Einwirkung von Calcium und von Digitalisglykosiden in Abhängigkeit von der Reizfrequenz. Naunyn-Schmiedeberg's Arch. Exp. Pathol. Pharmakol. 242: kes a current in cardiac membrane vesicles. Science (Wash. DC) 208:

1461-1464, 1980.

218. RETER, M.: Die Entstehung von "Nachkontraktionen" im Herzmuskel

unter Einwirkung von Calcium und von Digitalisglykosiden in Abhän
	- unter Einwirkung von Calcium und von Digitalisgiykosiden in Abhangig-
Reit von der Reizfrequenz. Naunyn-Schmiedeberg's Arch. Exp. Pathol.
Pharmakol. 242: 497-507, 1962.
Erren, M.: Die isometrische Kontraktion des Meerschwe 319. REFFER, M.: Die isometrische Kontraktion des Meerschweinchen-Papillar-
muskels in Abhängigkeit von der Calciumkonzentration und der Temper-
atur. Naunyn-Schmiedeberg's Arch. Exp. Pathol. Pharmacology of
Cardiac Functi
	- 320. REITER, M.: Electrolytes and myocardial contractility. In Pharmacology of Cardiac Function, ed. by O. Krayer, pp. 25–41, Pergamon Press, Oxford, 1964.
321. REITER, M.: The positive inotropic action of cardiac glycosid
	- ventricular muscle. *In* Handbook of Experimental Pharmacology, ad. by
	- Cardiac Function, ed. by O. Krayer, pp. 25-41, Pergamon Press, Oxford,
1964.

	221. RETTER, M.: The positive inotropic action of cardiac glycosides on cardiac

	ventricular muscle. In Handbook of Experimental Pharmacology, e inotropic effect of a reduction of extracellular potassium concentration.
Naunyn-Schmiedeberg's Arch. Pharmacol. 268: 361-378, 1971.
ETTER, M., VIERLING, W., AND SEIBEL, K.: Excitation-contraction cou-
pling in rested-stat
- current. *In* Cardiac Muscle: The Regulation of Excitation and Contraction. H. Greeff, 56, pp. 187-219, Springer-Verlag, Berlin, 1981.

ion, ed. by R. D. Nathan, pp. 171-200, Academic Press, Orlando, 1986.

293. Novorwy, I 1. Greeff, 56, pp. 187-219, Springer-Verlag, Berlin, 1981.

322. REITER, M., SEIBEL, K., AND STICKEL, F. J.: Sodium dependence of the

inotropic effect of a reduction of extracticular potensium concentration.

Naunyn-Schmi Naunyn-Schmiedeberg's Arch. Pharmacol. 268: 361-378, 1971.

323. REFFER, M., VIERLING, W., AND SEIBEL, K.: Excitation-contraction coupling in rested-state contraction for guinear pig ventricular myocardium.

Naunyn-Schmied
	- activator calcium in cardioletate contraction for giuse in cardioletate contraction of giuse in cardioletate contractions of giuse a pig ventricular myocardium.

	Satis 159–169, 1984.

	324. REFTER, M., VIERLING, W., AND SEI ETTER, M., VIERLING, W., AND S
20: 1–8.1984.
20: 1–8.1984.
EPKE, K.: Über den biochemische
Wochenschr. 42: 157–165, 1964.
EUTER, H.: Über die Wirkung von *1*
	-
	- activator calcium in cardiac ventricular contraction? Basic Res. Cardiol.

	T9: 1-8, 1984.

	NEPRE, K.: Über den biochemischen Wirkungsmodus von Digitalis. Klin.

	Wochenschr. 42: 157-165, 1964.

	326. REUTER, H.: Über die Wir
	- EUTER, H.: Uber die Wirkung von Adrenalin auf den cellularen Ca-Umsatz
des Meerschweinchenvorhofs. Naunyn-Schmiedeberg's Arch. Exp. Pathol.
Pharmakol. 251: 401-412, 1965.
EUTER, H.: The dependence of slow inward current in **492,** 1967.
	- des Meerschweinchenvorhofs. Naunyn-Schmiedeberg's Arch. Exp. Pathol.

	Pharmakol. 251: 401–412, 1965.

	327. REUTER, H.: The dependence of slow inward current in Purkinje fibres on

	the extracellular calcium-concentration. J EUTER, H.: The dependence of slow inward current in Purkinje fibres on
the extracellular calcium-concentration. J. Physiol. (Lond.) 192: 479-492, 1967.
EUTER, H.: Localization of beta adrenergic receptors, and effects of n advention and cyclic nucleotides on action potentials, ionic currents, and
tension in mammalian cardiac muscle. J. Physiol. (Lond.) 242: 429-451,
1974.
229. REUTER, H.: Properties of two inward membrane currents in the hea
	- 1974.
329. REUTER, H.: Properties of two inward membrane currents in the heart.
Annu. Rev. Physiol. 41: 413–424, 1979.
330. REUTER, H., AND SEITZ, N.: The dependence of calcium efflux from cardiac
	- 330. REUTER, H., AND SEITZ, N.: The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol. (Lond.)
195. 451–470, 1968.
195. 451–70, 1968.
195. 451–70, 1968.
331. REUTER, H
- **302. PAPPANO, A. J.: Calcium-dependent action potentials produced by cate-** 331. REUTER, H., STEVENS, C. F., TSIEN, R. W., AND YELLEN, G.: Properties of cholamines in guinea-pig atrial muscle fibers depolarized by potassi
- 330. REUTER, H., AND SEITZ, N.: The dependence of calcium efflux from cardiac
musele on temperature and external ion composition. J. Physiol. (Lond.)
195: 451-470, 1968.
331. REUTER, H., STEVENS, C. F., TSIEN, R. W., AND Y ingle calcium channels in cardiac cell culture. Nature (Lond.) 297: 501-504, 1982.

332. RICHARD, S., NERBONNE, J. M., NARGEOT, J., LESTER, H. A., AND GARNIER, D.: Photochemically produced intracellular concentration jumps cAMP mimic the effects of catecholamines on excitation-contraction
	-
	- 717-720, 1987. and Solution Contraction contraction coupling in frog atrial fibers. Pflügers Arch. 403: 312-317, 1985.

	332a. Rios, E., AND BRUM, G.: Involvement of dihydropyridine receptors in excitation-contraction coupl POTTER, J. D., AND SOLARO, R. J.: The effect of troponin I phosphorylation on the Ca²⁺-binding properties of the Ca²⁺-regulatory site of bovine cardiac troponin. J. Biol. Chem. 257: 260-263, 1982. 717-720, 1987.

	333. ROBERTSON, S. P., JOHNSON, J. D., HOLROYDE, M. J., KRANIAS, E. G.,

	POTTER, J. D., AND SOLARO, R. J.: The effect of troponin I phosphorylation on the Ca²⁺-binding properties of the Ca²⁺-regulatory
- 308. Philophys. Res. Commun. 128: 449-456, 1985. 1985. [334. ROBISON, G. A., BUTCHER, R. W., QYE, I., MORGAN, H. E., AND SUTHER-
308. PITTS, B. J. R.: Stoichiometry of sodium-calcium exchange in cardiac LAND, E. W.: The ef ation on the Ca²⁺-binding properties of the Ca²⁺-regulatory site of bovine
crdiac troponin. J. Biol. Chem. 257: 260-263, 1982.
ROBISON, G. A., BUTCHER, R. W., QVE, I., MORGAN, H. E., AND SUTHER-
LAND, E. W.: The effec
	- levels in the isolated perfused rat heart. Mol. Pharmaco
1965.
COUSSEAU, E., SMITH, J. S., HENDERSON, J. S., AND MEISS.
Channel and ⁴⁶Ca²⁺ flux measurements of the cardiac sarce
ulum calcium channel. Biophys. J. 50: 10

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

2012

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8,

- 216 REITER
335. ROEGG, J. C.: Effects of new inotropic agents on Ca⁺⁺ sensitivity of con-
tractile proteins. Circulation 73: III 78– III 84, 1986.
- REITER
335. ROEGG, J. C.: Effects of new inotropic agents on Ca⁺⁺ sensitivity of con-
536. SAITO, A., SEILER, S., CHU, A., AND FLEISCHER, S.: Preparation and
morphology of sarcoplasmic reticulum terminal cisternae from r morphology of sarcoplasmic reticulation 73: III 78– III 84, 1986.

336. SAITO, A., SEILER, S., CHU, A., AND FLEISCHER, S.: Preparation and

morphology of sarcoplasmic reticulum terminal cisternae from rabbit

skeletal musc
-
-
- skeletal muscle. J. Cell. Biol. 99: 875–885, 1984.

337. SANDOW, A.: Excitation-contraction coupling in skeletal muscle. Pharmacol.

Rev. 17: 265–320, 1965.

338. SCALES, D.: Three-dimensional electron microscopy of mammal **339.** SCHATZMAN, H. J.: Transmembrane calcium movements in released hu-
339. SCHATZMANN, M., GREGER, R., AND HONERJAGER, P.: Mechanism of
antiarrhythmic action of ryanodine. Naunyn-Schmiedeberg's Arch. Phar-
macol. 316: R
- antiarrhythmic action of ryanodine. Naunyn-Schmiedeberg's Arch. Pharmach.

3140. ScHATMANN, H. J.: Transmembrane calcium movements in released human red cells. In Calcium & Cellular Function, ed. by A. W. Cuthbert, pp.

34
- more measured muscles: a possible step in excitation-contraction and cells. In Calcium & Cellular Function, ed. by A. W. Cuthbert, present-

841. SCHNEIDER, M. F., AND CHANDLER, W. K.: Voltage dependent charge

movement in
- HNEIDER, M. F., AND CHANDLER, W. K.: Voltage dependent charge
coupling. Nature (Lond.) 242: 244-246, 1973.

HOLZ, H.: Effects of beta- and alpha-adrenoceptor activators and adre-

HOLZ, H.: Effects of beta- and alpha-adren coupling. Nature (Lond.) 242: 244-246, 1973.

342. SCHOLZ, H.: Effects of beta- and alpha-adrenoceptor activators and adre-

nergic transmitter releasing agents on the mechanical activity of the

heart. In Handhook of Expe nergic transmitter releasing agents on the mechanical activity of the heart. In Handbook of Experimental Pharmacology, ed. by L. Szekeres, 541. pp. 651-733, Springer-Verlag, Berlin, 1980.

343. SCHOLZ, H., AND MEYER, W.: P
-
- receptors in Muscle are voltage-dependent but most are not functional calcium channels of CHWARTZ, H., AND MEYER, W.: Phosphodiesterase-inhibiting properties of CHWARTZ, L. M., MCCLESKEY, E. W., AND ALMERS, W.: Dihydropyri **3434.** SCHWARTZ, L. M., MCCLESKEY, E. W., AND ALMERS, W.: Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature (Lond.) 314: 747–751, 1985.
 344. SEIBEL, K., KARE
- receptors in muscle are voltage-dependent but most are not functional
calcium channels. Nature (Lond.) 314: 747-751, 1985.
344. SEIBEL, K., KAREMA, E., TAKEYA, K., AND REITER, M.: Two components
of heart muscle contraction
- Naunyn-Schmiedeberg's Arch. Pharmacol. 305: 65-74, 1978.
- Schmiedeberg's Arch. Pharmacol. **304:** R19, 1976.

345. SEIBEL, K., KAREMA, E., TAKEYA, K. AND REITER, M.: Effect of noradrenaline on an early and a late component of the myocardial contraction.

Naunyn-Schmiedeberg's Arch
- 347. SEILER, S., WEGENER, A. D., WHANG, D. D., HATHAWAY, D. R., AND JONES, L. R.: High molecular weight proteins in cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles bind calmodulin, are of myocardial contraction in presence of noradrenaline. Naunyn-Schmie-
deberg's Arch. Pharmacol. 302: R31, 1978.

347. SELER, S., WEGENER, A. D., WHANG, D. D., HATHAWAY, D. R., AND

JONES, L. R.: High molecular weight pro
- phosphorylated, and are degraded by Ca⁻-activated protease. J. Biol.
Chem. 259: 8550-8557, 1984.
348. SHEU, S. S., AND FOZZARD, H. A.: Transmembrane Na⁺ and Ca²⁺ electro-
chemical gradients in cardiac muscle and thei
- 348. SHEU, S. S., AND FOZZARD, H. A.: Transmembrane Na' and Ca" electro-
chemical gradients in cardiac muscle and their relationship to force
development. J. Gen. Physiol. 80: 325-351, 1982.
349. SHEU, S. S., SHARMA, V. K.
-
-
- 351. SIEGELBAUM, S. A., AND TSIEN, R. W.: Calcium-activated transient outward
current in calf cardiac Purkinje fibres. J. Physiol. (Lond.) 299: 485-506,
1980.
352. ŠIMURDOVA, M., BRAVENÝ, P., AND ŠUMBERA, J.: Slow inward
c 352. ŠIMURDA, J., ŠIMURDOVA, M., BRAVENÝ, P., AND ŠUMBERA, J.: Slow inward conditions. Prime Teaching Conditions. Physiol. (Lond.) 299: 485-1
1980.
352. ŠIMURDA, J., ŠIMURDOVA, M., BRAVENÝ, P., AND ŠUMBERA, J.: Slow inw
current and action potentials of papillary muscles under non-steady st
condit
- dependent changes of slow inward current and action potentials of papillary muscles under non-steady state
conditions. Pflügers Arch. 362: 209-218, 1976.
SMURDA, J., SIMURDOVA, M., BRAVENÝ, P., AND ŠUMBERA, J.: Activity-
d
- Of dibutyryl cyclic adenosine 3',5' -monophosphate. Circ. Res. 26: 35-43, 1970.
 SLEATOR, C. L., LEVEY, G. S., AND EPSTEIN, S. E.: Positive inotropic effects

of dibutyryl cyclic adenosine 3',5' -monophosphate. Circ. Res 354. SKELTON, C. L., LEVEY, G. S., AND EPSTEIN, S. E.: Positive inotropic effects
of dibutyryl cyclic adenosine 3',5'-monophosphate. Circ. Res. 26: 35–43,
1970.
Action potentials of guinea pig atria under conditions which
- of dibutyryl cyclic adenosine 3',5'-monophosphate. Circ. Kes. 26: 35-43,
1970.
355. SLEATOR, W., JR., FURCHGOTT, R. F., DEGUBAREFF, T., AND KRESPI, V.:
Action potentials of guinea pig atria under conditions which alter con
- EATOR, W., JR., FURCHGOTT, R. F., DEGUBARETT, T., AND KRESPI, V.:
Action potentials of guinea pig atria under conditions which alter con-
traction. Am. J. Physiol. 206: 270-282, 1964.
ITH, J. S., CORONADO, R., AND MEISSNER
- 1356. SMTH, J. S., CORONADO, R., AND MEISSNER, G.: Sarcoplasmic reticulum

contains adenine nucleotide-activated calcium channels. Nature (Lond.

316: 446-449, 1985.

357. SNOWDOWNE, K. W., AND LEE, N. K. M.: Subcontractur contains adenine nucleotide-activated calcium channels. Nature (Lond.)
357. SNOWDOWNE, N.S. W., AND LEE, N. K. M.: Subcontracture concentrations
of potassium and stretch cause an increase in the activity of intracellular
c
-
- S58. SOLANDT, D. Y.: The effect of potassum on the excitability and resting
metabolism of frog's muscle. J. Physiol. (Lond.) 86: 162-170, 1936.

359. SOLARO, R. J., MOR, A. J. G., AND PERRY, S. V.: Phosphorylation of

trop
- LARO, R. J., MOIR, A. J. G., AND PERRY, S. V.: Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature (Lond.) 262: 615-617, 1976.
LARO, R. J., AND RÜEGG, J. C.: Stimulati agent. Circ. Res. 51: 290–294, 1982.

agent. Circ. Res. 51: 290–294, 1
- activity of dog cardiac myofibrils by AR-L 115BS, a novel cardiotonic agent. Circ. Res. 51: 290-294, 1982.
361. SOLARO, R. J., WISE, R. M., SHINER, J. S., AND BRIGGS, F. N.: Calcium requirements for cardiac myofibrillar ac 361. SOLARO, R. J., WISE, R. M., SHINER, J. S., AND BRIGGS, F. N.: Calcium
- 299, 1985.
- 363. **SOMLYO, A. V., GONZALEZ-SERRATOS, H., SHUMAN, H., MCCLELLAN, G.,**

AND SOMLYO, A. P.: Calcium release and ionic changes in the sarcoplasmic AND SOMLYO, A. P.: Calcium release and ionic changes in the sarcoplasmic
reticulum of tetanized muscle: an electron-probe study. J. Cell. Biol. 90:
577–594, 1981.
MMER, J. R., AND JOHNSON, E. A.: Ultrastructure of cardiac

- morphology of sarcoplasmic reticulum terminal cisternae from rabbit 364. SOMMER, J. R., AND JOHNSON, E. A.: Ultrastructure of cardiac muscle. In

Rev. 17. SANDOW, A.: Excitation-contraction coupling in skeletal muscle. Pha AND SOMLYO, A. P.: Calcium release and ionic changes in the sarcoplasmic
reticulum of tetanized muscle: an electron-probe study. J. Cell. Biol. 90:
577-594, 1981.
364. Sommen, J. R., AND JOHNSON, E. A.: Ultrastructure of c SOCI-994, 1981.
MMMER, J. R., AND JOHNSON, E.
Handbook of Physiology, section
The Heart, ed. by R. M. Berne
Society, Washington, DC, 1979.
ERELAKIS, N., AND RUBIO, R.: A 364. SOMMER, J. R., AND JOHNSON, E. A.: Utrastructure or cartuac muscle. *In*
Handbook of Physiology, section 2, The Cardiovascular System, vol. I,
The Heart, ed. by R. M. Berne, pp. 113-186, American Physiological
Society
	-
	- FERELAKIS, N., AND KUBIO, K.: An orderly lattice of axial tubules which
interconnect adjacent transverse tubules in guinea-pig ventricular myo-
cardium. J. Mol. Cell. Cardiol. 2: 212-220, 1971.
FERELAKIS, N., AND SCHNEIDER interconnect adjacent transverse tubules in guinea-pig ventricular m
cardium. J. Mol. Cell. Cardiol. 2: 212-220, 1971.
366. SPERELAKIS, N., AND SCHNEIDER, J. A.: A metabolic control mechani
for calcium ion influx that may
	- ERELAKIS, N., AND SCHNEIDER, J. A.: A metabolic control mechanism
for calcium ion influx that may protect the ventricular myocardial cell.
Am. J. Cardiol. 37: 1079-1085, 1976.
EMMER, P., AND AKERA, T.: Concealed positive f
	-
	- Am. J. Cardiol. 37: 1079-1085, 1976.

	367. STEMMER, P., AND AKERA, T.: Concealed positive force-frequency relation-

	ships in rat and mouse cardiac muscle revealed by ryanodine. Am. J.

	Physiol. 251: H1106-H1110, 1986.

	36 caused by spontaneous Ca-dependent cellular mechanical oscillations of the spontaneous Ca-dependent cellular mechanical oscillations.

	369. STERN, M. D., KORT, A. A., BHATNAGAR, G. M., AND LAKATTA, E. G.: Scattered-light
	- caused by spontaneous Ca⁺⁺-dependent cellular mechanical oscillations.
J. Gen. Physiol. 82: 119-153, 1983.
i, J. Y., AND HASSELBACH, W.: Caffeine-induced calcium release from
isolated sarcoplasmic reticulum of rabbit ske **400: 14-21, 1984. 370. Sulphameters** Caused by spontaneous Ca⁺⁺-dependent cellular mechanical oscillations.

	370. Su, J. Y., AND HASSELBACH, W.: Caffeine-induced calcium release from

	isolated sarcoplasmic reticulum of
	-
	- 371. SULAKHE, P. V., AND LOUIS, P. J. S.: Passive and active calcium fluxes across plasma membranes. Prog. Biophys. Mol. Biol. 35: 135-195, 1980.
372. SUTHERLAND, E. W., AND RALL, T. W.: The relation of adenosine 3',5'--
p 400: 14–21, 1964.
JLAKHE, P. V., AND LOUIS, P. J. S.: Passive and active calcium fluxes
across plasma membranes. Prog. Biophys. Mol. Biol. 35: 135–195, 1980.
JTHERLAND, E. W., AND RALL, T. W.: The relation of adenosine 3',
	- 373. SUTKO, J. L., BERS, D. M., AND REEVES, J. P.: Postrest inotropy in rabbit ventricle: Na⁺-Ca³⁺ exchange determines sarcoplasmic reticulum Ca³⁺ content. Am. J. Physiol. **19:** H654-H661, 1986. THERLAND, E. W., AND KALL, T. W.: The relation of adenosine $3^{\cdot},5^{\cdot}$ phosphate and phosphorylase to the actions of catecholamines and other hormones. Pharmacol. Rev. 12: 265–299, 1960.

	JTKO, J. L., BERS, D. M., AND RE ventricle: Na⁺-Ca³⁺ exchange determines sarcoplasmic reticulum Ca²⁺ content. Am. J. Physiol. 19: H654-H661, 1986.
UTKO, J. L., ITO, K., AND KENYON, J. L.: Ryanodine: a modifier of sarcoplasmic reticulum calcium rele
	- hormones. Pharmacol. Rev. 12: 265–259, 1960.

	373. Survo, J. L., BERS, D. M., AND REEVES, J. P.: Postrest inotropy in rabbit

	ventricle: Na⁺Ca²⁺ exchange determines sarcoplasmic reticulum Ca²⁺

	content. Am. J. Physio
	- 2984–2988, 1985.
375. SUTKO, J. L., AND KENYON, J. L.: Ryanodine modification of cardiac muscle
responses to potassium-free solutions. J. Gen. Physiol. 82: 385–404, 1983.
376. SUTKO, J. L., AND WILLERSON, J. T.: Ryanodine 375. SUTKO, J. L., AND KENYON, J. L.: Ryanodine modification of cardiac muscle
responses to potassium-free solutions. J. Gen. Physiol. 82: 385–404, 1983.
376. SUTKO, J. L., AND WILLERSON, J. T.: Ryanodine alteration of the
	-
	- state of rat ventricular myocardium. Circ. Res. 46: 332-343, 1980.
UTKO, J. L., WILLERSON, J. T., TEMPLETON, G. H., JONES, L. R., AND
BESCH, H. R., JR.: Ryanodine: its alterations of cat papillary muscle **BESCH,** H. R., AND WILLERSON, J. T.: Ryanodine alteration of the contractile state of rat ventricular myocardium. Circ. Res. 46: 332–343, 1980.

	BESCH, J. L., WILLERSON, J. T., TEMPLETON, G. H., JONES, L. R., AND

	BESCH, suggested mechanism of action. J. Pharmacol. Her. A. Pharmacol. H. J. Pharmacol. E. R., AND BESCH, H. R., JR.: Ryanodine: its alterations of cat papillary muscle contractile state and responsiveness to inotropic interventi contractile state and responsiveness to inotropic interventions and a suggested mechanism of action. J. Pharmacol. Exp. Ther. 200: 37-47, 378. TADA, M., AND KATZ, A. M.: Phosphorylation of the sarcoplasmic reticulum and sa
	-
	- 379. Tampa on the biphasic mechanism of action. J. Pharmacol. Exp. Ther. 209: 37-47,
1979. TADA, M., AND KATZ, A. M.: Phosphorylation of the sarcoplasmic reticulum
and sarcolemma. Annu. Rev. Physiol. 44: 401-423, 1982.
379 and sarcolemma. Annu. Hev. Physiol. 44: 401-423, 1982.

	379. TAKEYA, K., SEIBEL, K., AND REITER, M.: Influence of dibutyryl cyclic

	AMP on the biphasic contraction of guinea pig papillary muscle. Jpn. J.

	Pharmacol. 26: 14
	- KEYA, K., SEIBEL, K., AND REITER, M.: Influent
AMP on the biphasic contraction of guinea pig par
Pharmacol. 26: 140P, 1976.
KKEYA, K., YAJIMA, M., KOBAYASHI-ANDO, S., AN
inotropic effect of 3,4,-dihydro-6-[4-(3,4-dimetho
z AMP on the biphasic contraction of guinea pig papillary muscle. Jpn. J.
Pharmacol. 26: 140P, 1976.
TAKEYA, K., YAJIMA, M., KOBAYASHI-ANDO, S., AND ANDO, H: Positive
inotropic effect of 3,4,-dihydro-6-[4-(3,4-dimethoxybenzy 8644) that enhances calcium currents in guinea pig and calf myocardial cells. Circ. Rae. **56: 87-96,** 1985. 382. **THYRUM, P. T.: Inotropic stimuli and systolic transmembrane calcium flow**
	-
	- in depolarized guinea-pig atria. J. Pharmacol. Exp. Ther. 188: 166-179,
	- 383. THYRUM, P. T.: Inotropic stimuli and systolic transmembrane calcium flow
in depolarized guinea-pig atria. J. Pharmacol. Exp. Ther. 188: 166-179,
1974.
ance and tension in mammalian ventricular muscle. Pflugers Arch. 3 1974.

	383. TRAUTWEIN, W., MCDONALD, T. F., AND TRIPATHI, O.: Calcium conduct-

	ance and tension in mammalian ventricular muscle. Pflügers Arch. 354:

	55-74, 1975.

	384. TRITTHART, H., KAUFMANN, R., VOLKMER, H. P., BAYER,
	- 383. TRAUTWEIN, W., MCDONALD, T. F., AND TRIPATHI, O.: Calcium conduct-
ance and tension in mammalian ventricular muscle. Pflügers Arch. 354:
55-74, 1975.
384. TRITHART, H., KAUPMANN, R., VOLKMER, H. P., BAYER, R., AND KRA
	-
	- 938: 207-231, 1973.

	885. Tsusy, R. W.: Cyclic AMP and contractile activity in heart. Adv. Cyclic Nucleotide Res. 8: 363-420, 1977.

	386. URTHALER, F., WALKER, A. A., HEFNER, L. L., AND JAMES, T. N.: Comparison of contract
	- 386. URTHALER, F., WALKER, A. A., HEFNER, L. L., AND JAMES, T. N.: Comparison of contractile performance of canine atrial and ventricular muscles. Circ. Res. 37: 762–771, 1975.
387. VALDEOLMILLOS, M., AND EISNER, D. A.: Th 387. VALDEOLMILLOS, M., AND EISNER, D. A.: The effects of ryanodine on
	- calcium release in frog skeletal muscle. J. Physiol. (Lond.) **191: 141-165,** 1967.
	- 389. VAN DERKLOOT, W. G.: The steps between depolarization and the increase
in the respiration of frog skeletal muscle. J. Physiol. (Lond.) 204: 551-
569. 1969.
	- 390. VASSALE, M., KARIS, J., AND HOFFMAN, B. F.: Toxic effects of ouabain on Purkinje fibers and ventricular muscle fibers. Am. J. Physiol. 203: 433-439. 1962. Purkinje fibers and ventricular muscle fibers. Am. J. Physiol. 203: 433-

NANH

spet

lspet

- 391. **VASSORT,** G.: Influence of sodium ions on the regulation of frog myocardial
- 392. VASSORT, G., AND ROUGIER, O.: Membrane potential and slow inward current dependence of frog cardiac mechanical activity. Pflügers Arch. 331: 191-203. 1972. current dependence of sodium ions on the regulation of frog myocardial contractility. Pflügers Arch. **339: 225-240**, 1973.

392. VASSORT, G., AND ROUGIER, O.: Membrane potential and slow inward current dependence of frog c
- current dependence of frog cardiac mechanical activity. Pflügers Arch.
331: 191–203, 1972.
ASSORT, G., ROUGUER, O., GARNIER, D., SAUVIAT, M. P., CORABOEUP, E.,
AND GARGOUIL, Y. M.: Effects of adrenaline on membrane inwar rent dependence of frog cardiac mechanical activity. Pflügers Arch.
 331: 191–203, 1972.

ASSORT, G., ROUGUER, O., GARNIER, D., SAUVIAT, M. P., CORABOEUP, E.,

AND GARGOUIL, Y. M.: Effects of adrenaline on membrane inwar **393. VASSORT, G., ROUGER, O., GARNIER, D., SAUVIAT, M. P., CORABOEUF, E.,**
AND GARGOUIL, Y. M.: Effects of adrenaline on membrane inward cur-
rents during the cardiac action potential. Pflügers Arch. **309**: 70–81, 1969.

- (suppl.): 76-83, 1971. 395. VERDONCK, F., AND CARMELIET, E.: Isometric contractions in cardiac Purkinje fibres: characteristics in Na free Sr tyrode. Cardiovasc. Res. 1 (suppl.): 76-83, 1971.

395. VERGARA, J., TSIEN, R. Y
- possible chemical link in excitation-contraction-contractions-contraction-contraction-contraction-contraction-contraction-contraction-contraction-contraction-contraction-contraction-contraction-contraction-contraction-cont
- possible chemical link in excitation-contraction coupling in muscle. Proc.
Natl. Acad. Sci. USA 82: 6352-6356, 1985.
ETTER, R., HAASE, H., AND WILL, H.: Potentiating effect of calmodulin
and catalytic subunit of cyclic A possible chemical link in excitation-contraction coupling in muscle. Froc.
Nartl. Acad. Sci. USA 82: 6352-6356, 1985.
396. VETTER, R., HAABE, H., AND WILL, H.: Potentiating effect of calmodulin
and catalytic subunit of cyc
- dependent Ca²⁺-transport by cardiac sarcolemma. FEBS Lett. 148: 326-330, 1982.
397. VIERLING, W.: Ryanodine in mammalian heart ventricular muscle: indication for the induction of calcium leakage from the sarcoplasmic ret Eur. J. Pharmacol. 145: 329-334, 1988.

2397. VIERLING, W.: Ryanodine in mammalian heart ventricular muscle: indica-

tion for the induction of calcium leakage from the sarcoplasmic reticulum.

Eur. J. Pharmacol. 145: 329-
- ERLING, W.: Kyanoune in mammailan neart ventricular muscle:
tion for the induction of calcium leakage from the sarcoplasmic ret
ERLING, W., AND RETTER, M.: Frequency-force relationship in gui
ventricular myocardium as infl deberg's Arch. Pharmacol. 145: 329-334, 1988.

WIERLING, W., AND REITER, M.: Frequency-force relationship in guinea-pig 413. Ventricular myocardium as influenced by magnesium. Naunyn-Schmie-

deberg's Arch. Pharmacol. 289:
- ERLING, W., AND REITER, M.: Frequency-lorce relationship in guinea-pig
ventricular myocardium as influenced by magnesium. Naunyn-Schmie
deberg's Arch. Pharmacol. 289: 111-125, 1975.
ERLING, W., SEIBEL, K., AND REITER, M.: ness, Wiener's Arch. Pharmacol. 289: 111-125, 1975.

399. VIERLING, W., SEIBEL, K., AND REITER, M.: Voltage-dependent calcium

release in guinea-pig cardiac ventricular muscle as antagonized by magnesium and calcium. Basic LIERLING, W., SEIBEL, N., AND NEITER, M.: VOLUGE-UPPENDENT cleane release in guinea-pig cardiac ventricular muscle as antagonized by mag-
nesults. The sults. SEE C. Res. Cardiol. 82: 415-427, 1987.
VIERLING, W., SEE L., H.
-
- nesium and calcium. Basic. Res. Cardiol. 82: 415–427, 1987.

IERLING, W., SIEGL, H., HILGEMANN, D. W., AND REITER, M.: unpub-

lished results.

DLPE, P., SALVIATI, G., DIVIRGILIO, F., AND POZZAN, T.: Inositol 1,4,5-

DLPE, SP9a. VIERRA, W., SEGLI, H., HILGEMANN, D. W., AND RETER, M.: Unpub-

lished results.

Inhed results.

400. VOLPE, P., SALVIATI, G., DIVIRGILIO, F., AND POZZAN, T.: Inositol 1,4,5-

trisphosphate induces calcium release fr
-
- Trapprosphate intuities calculum release from sarcoplasmic reticulum of

skeletal muscle. Nature (Lond.) 316: 347-349, 1985.

401. VoLPE, P., AND STEPHENSON, E. W.: Ca²⁺ dependence of transverse tubule-

mediated calcium **MODULATION CONTRESS, A. M. P., AND KREBS, E. G.: An adenosine 3',5'-** monophosphate-dependent protein kinase from rabbit skeletal muscle. J.
Biol. Chem. 243: 3763-3765, 1968.
403. WATANABE, A. M., AND BESCH, H. R., J.R.
- monophosphate-dependent protein sinase from rabolt skeletal muscle. J.

Biol. Chem. 243: 3763-3765, 1968.

403. WATANABE, A. M., AND BESCH, H. R., JR.: Cyclic adenosine monophosphate

modulation of slow calcium influx chan reticulum. J. Gen. Physiol. 52: 760-772, 1968.
 Res. 35: 316-324, 1974.
 404. WEBER, A.: The mechanism of the action of caffeine on sarcoplasmic

reticulum. J. Gen. Physiol. 52: 760-772, 1968.

405. WEBER, A.: Synopsis
-
- Sympa. Soc. Exp. Biol., 30, pp. 445-455, Cambridge University Press, Great Britain, 1976.

405. WEBER, A.: Synposis of the presentations. *In* Calcium in Biological Systems, Symp. Soc. Exp. Biol., 30, pp. 445-455, Cambridg
-

- of intact muscle and the effect of caffeine on reticulum. J. Gen. Phyeiol. **52:** 750-759, 1968. 407. **WEIDMANN,** S.: Effect of increasing the calcium concentration during a
- of intact muscle and the effect of caffeine on reticulum. J. Gen. Physi
52: 750–759, 1968.
407. WEIDMANN, S.: Effect of increasing the calcium concentration during
single heart-beat. Experientia (Basel) 15: 128, 1959.
408.
- 1988. **52:** 750-759, 1968. **Effect of increasing the calcium concentration during a single heart-beat. Experientia (Basel) 15: 128, 1959. 408. WEIDMANN, S.: Cardiac cellular electrophysiology: past and present. Experien** H. R.: S.: S.: Subclasses of cyclic Readel) 15: 128, 1959.

H. R.: SubMANN, S.: Cardiac cellular electrophysiology: past and present. Experientia (Basel) 43: 133-146, 1987.

H. R.: Subclasses of cyclic AMP-specific phospho
- From initia (Basel) 43: 133-146, 1987.

ientia (Basel) 43: 133-146, 1987.

409. WEISHAAR, R. E., KOBYLARZ-SINGER, D. C., STEFFEN, R. P., AND KAPLAN,

H. R.: Subclasses of cyclic AMP-specific phosphodiesterase in left ven-
 tility. Circ. Res. 61: 539–547, 1987.
EISHAAR, R. E., QUADE, M., BOYD, D., SCHENDEN, J., MARKS, S., AND
KAPLAN, H. R.: The effect of several "new and novel" cardiotonic agents
on key subcellar processes involved in the reg 534, 1983. H. E.; Wester, 1983. H. R.; Dubi, D., D., Exhistople, The and novel" cardiotonic agents on key subcellar processes involved in the regulation of myocardial contractility: implications for mechanism of action. Dr on key subcellar processes involved in the regulation of myocardial contractility: implications for mechanism of action. Drug Dev. Res. 3: 517-534, 1983.
EXPLETE: The rate of the rate. The rate of the rat. The rate force p
- **Philopole 1983: 210-216, 1983.** 210-216, 1983. Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflügers Arch. **398:** 210-216, 1983.
 Philopole Arch. 212. WEN
- ENDT, I. R., AND STEPHENSON, D. G.: Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflügers Arch. 3963: 210-216, 1983.

^{Phil}ugers Arch. 398: 210-216, 1983.

- 412. WENDT-GALLITELLI, M. F.: Presystolic calcium-loading of the sarcoplasmic
reticulum influences time to peak force of contraction. X-ray microanal-
ysis on rapidly frozen guinea-pig ventricular muscle preparations. Basi Res. Cardiol. 80: 617-625, 1985.

413. WENDT-GALLITELLI, M. F., JACOB, R., AND WOLBURG, H.: Intracellular

membranes as boundaries for ionic distribution. In situ elemental distri-

bution in guinea pig heart muscle in dif
- bution in guinea pig heart muscle in different defined electro mechanical
coupling states. Z. Naturforsch. 37c: 712-720, 1982.
414. WER, W. G., CANNELL, M. B., BERLIN, J. R., MARBAN, E., AND LEDERER,
W. J.: Cellular and su
- 415. WIER, W. G., KORT, A. A., STERN, M. D., LAKATTA, E. G., AND MARBAN, E.: Cellular calcium fluctuations in mammalian heart: direct evidence from noise analysis of sequorin signals in Purkinje fibers. Proc. Natl. Aced. S cells revealed by fura-2. Science (Wash. DC) 2385: 325-328, 1987.

415. WIER, W. G., KORT, A. A., STERN, M. D., LAKATTA, E. G., AND MARBAN,

E.: Cellular calcium fluctuations in mammalian heart: direct evidence

from noise II. Wight, A. Ca., Yust, A. Carlier, The mammalian heart: direct evidence
from noise analysis of aequorin signals in Purkinje fibers. Proc. Natl.
Acad. Sci. USA 80: 7367-7371, 1983.
416. WIER, W. G., YUE, D. T., AND MARBAN
- The WIER, W. G., YUE, D. T., AND MARBAN, E.: Effects of ryanodine on intracellular Ca²⁺ transients in mammalian cardiac muscle. Fed. Proc. 44:2989-2993, 1985.
417. WIGGRAD, J. R.: Inotropic actions of isoproterenol in ca
- **Rev. Physiol. 44: 2989-2993, 1985.**
 R. F. Inotropic actions of isoproterenol in cat ventricular muscle.

Circ. Res. 49: 718-725, 1981.
 REV. Physiol. 44: 451-462, 1982.
 REV. Physiol. 44: 451-462, 1982.
 REV. Phys
-
-
- 418. WINEGRAD, S.: Calcium release from cardiac sarcoplasmic reticulum. Annu.

NEWEGRAD, S.: Calcium release from cardiac sarcoplasmic reticulum. Annu.

Rev. Physiol. 44: 451-462, 1982.

419. WOHLFART, B., AND NOBLE, M. I
-
- G. Nayler, pp. 113-190, Academic Press, London, 1975.

COD, E. H., HEPPNER, R. L., AND WEIDMANN, S.: Inotropic effects of

electric currents. Circ. Res. 24: 409-445, 1969.

UE, D. T., MARBAN, E., AND WEIR, W. G.: Relations

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012 Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012